高中物理带电粒子在磁场中的运动技巧(很有用)及练习题
一、带电粒子在磁场中的运动专项训练
1.如图所示,xOy平面处于匀强磁场中,磁感应强度大小为B,方向垂直纸面向外.点
?3?P?L,0??3?处有一粒子源,可向各个方向发射速率不同、电荷量为q、质量为m的带负电??粒子.不考虑粒子的重力.
(1)若粒子1经过第一、二、三象限后,恰好沿x轴正向通过点Q(0,-L),求其速率v1;
(2)若撤去第一象限的磁场,在其中加沿y轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v1沿x轴正向通过点Q,求匀强电场的电场强度E以及粒子2的发射速率v2;
(3)若在xOy平面内加沿y轴正向的匀强电场Eo,粒子3以速率v3沿y轴正向发射,求在运动过程中其最小速率v.
某同学查阅资料后,得到一种处理相关问题的思路:
带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)【解析】 【详解】
2BLq221BLq(2)(3)3m9m?E0???E
??vB?B?2032v12(1)粒子1在一、二、三做匀速圆周运动,则qv1B?m
r1?3?22由几何憨可知:r1??L?r1????3L??
??2得到:v1?2BLq 3m(2)粒子2在第一象限中类斜劈运动,有:
1qE23h?t ,L?v1t2m38qLB2在第二、三象限中原圆周运动,由几何关系:L?h?2r1,得到E?
9m22又v2?v1?2Eh,得到:v2?221BLq 9m(3)如图所示,将v3分解成水平向右和v?和斜向的v??,则qv?B?qE0,即v??而v???2 v'2?v3E0 B所以,运动过程中粒子的最小速率为v?v???v?
E?E?2即:v??0??v3?0
B?B?2
2.如图,区域I内有与水平方向成45°角的匀强电场E1,区域宽度为d1,区域Ⅱ内有正交的有界匀强磁场B和匀强电场E2,区域宽度为d2,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m、电量大小为q的微粒在区域I左边界的P点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了30,重力加速度为g,求:
(1)区域I和区域Ⅱ内匀强电场的电场强度E1、E2的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B的大小. (3)微粒从P运动到Q的时间有多长.
6d1??d2m2gd12mgE?mg2gd1 【答案】(1)E1?,2 (2) (3)q6gd2qd2q2【解析】 【详解】
(1)微粒在区域I内水平向右做直线运动,则在竖直方向上有:qE1sin45??mg 求得:E1?2mg q微粒在区域II内做匀速圆周运动,则重力和电场力平衡,有:mg?qE2 求得:E2?mg q12mv 2(2)粒子进入磁场区域时满足:qE1d1cos45??v2qvB?m
R根据几何关系,分析可知:R?整理得:B?d2?2d2 sin30?m2gd1 2qd2(3)微粒从P到Q的时间包括在区域I内的运动时间t1和在区域II内的运动时间t2,并满足:
12a1t1?d1 2mgtan45??ma1
t2?30?2?R? 360?v经整理得:t?t1?t2?2d112?2gd6d1??d2???2gd1 g12qB6gd2
3.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN上方区域的平行长金属板AB间电压大小可调,平行长金属板AB间距为d,匀强磁场的磁感应强度大小为B,方向垂直纸面向里.MN下方区域I、II为两相邻的方向相反的匀强磁场区,宽度均为3d,磁感应强度均为B,ef是两磁场区的分界线,PQ是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.
(1)要使速度为v的正电子匀速通过平行长金属极板AB,求此时金属板AB间所加电压U;
(2)通过调节电压U可以改变正电子通过匀强磁场区域I和II的运动时间,求沿平行长金属板方向进入MN下方磁场区的正电子在匀强磁场区域I和II运动的最长时间tm; (3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN下方磁场区,它们既能被收集板接收又不重叠,求金属板AB间所加电压U的范围.