y?1.8,t解:(Ⅰ)t?3,2?ty?9,ty?5.4,ii?1i5i?30.3,ti2?55,?i?1
5??b?(ti?1ni?t)(yi?y)?i?tyii?155?5ty??5t2?(ti?1n?t)2?ti?1230.3?273.3??0.33,55?4510i
??1.8?0.33?3?0.81??y?bta,
?所以回归方程为y?0.33t?0.81. ………………………………(6分)
(Ⅱ)若满五年换一次设备,则由(Ⅰ)知每年每台设备的平均费用为:
5?5?1.8y1??2.85(万元), 若满十年换一次设备,则由(Ⅰ)知每年每台设备的平均费用大概为: 5?0.33(1?2?????10)?10?0.81y2??3.12510(万元),
因为y1?y2,所以甲更有道理. …………………………………(12分) 20.(本小题满分12分)
?2?y22M?,1?x??1?2???m解:(Ⅰ)把点代入,可得m?2,
y22x??1,?1),F2(0,1),离心率为2. 2所以椭圆C的方程为焦点坐标分别为F1(0,2 …………………………………………………………………………(5分)
?2?M?1??2,?MF?yF(0,1)?知2(Ⅱ)直线l过焦点2,由?轴, 记直线MA,MB的斜率分别为k1,k2, 当直线MF2平分?AMB时,k1?k2?0. 设A(x1,y1),B(x2,y2),
?y?kx?1,??2y2?1,22?x?(k?2)x?2kx?1?0, ?2由消去y整理得,x1?x2??2k?1xx?12k2?2,k2?2,
故
11
??x1x2k1?k2???2k??4x1x2?2(x1?x2)?2x?22x?2??22?12??kg?0x1?x2?2xx?2(x?x)?1221212所以,
y1?1y2?1即4x1x2?2(x1?x2)?0,
?422k??022k?2k?2故,解得k?2,
(x1?x2)2?(x1?x2)2?4x1x2?从而
63|x1?x2|?2, 2,即
∴△ABF1的面积
S?1166|F1F2||x1?x2|??2??2222. ………………(12分)
21.(本小题满分12分) x?m?3f?(x)?ex解:(Ⅰ),
?当m≥3时,由x?(0,3)知f(x)?0,所以,f(x)在(0,3)上单调递增;
??当0?m?3时,由x?(0,3),令f(x)?0,得0?x?3?m,令f(x)?0,得3?m?x?3,
所以,f(x)在(0,3?m)上单调递减,在(3?m,3)上单调递增;
?当m≤0时,由x?(0,3)知f(x)?0,所以,f(x)在(0,3)上单调递减. ………(5分)
(Ⅱ)当m?1时,由F(x)?f(x)?g(x)?0知,x?0,故
k?1?xx2ex,
x2?21?xh?(x)?3xh(x)?2x(x?0)xe. xe令,得?由h(x)?0,得x??2或0?x?2, ?由h(x)?0,得?2?x?0或x?2,
所以h(x)在(??,?2),(0,2)上单调递减,在(?2,0),(2,??)上单调递增.
h(?2)?1?22e?2当x?0时,h(x)在x??2处取得极小值
?0,
且当x???时,h(x)???;当x?0时,h(x)???.
h(2)?1?22e2当x?0时,h(x)在x?2处取得极小值
?0,
12
且当x?0时,h(x)???;当x???时,h(x)?0. 综上所述,结合h(x)的图形可得,
??1?2?0k????,2??2e?????1?k?1?2或0≤k?1?2?,?2?2????2e2e???n(k)???1?21?2??2k?或?k?0,????22??2e2e???????3?k?1?2?.??2e?2???? ………………………………………(12分)
22.(本小题满分10分)【选修4?4:坐标系与参数方程】
1?2sin?)(??[0,2π)), 解:(Ⅰ)动抛物线C的顶点坐标为(3?2cos?,??x?3?2cos?,(?为参数,??[0,2π))?y?1?2sin?,?则曲线E的参数方程为?.
由直线l的极坐标方程是
?cos?????26???π?,
31?cos???sin??22得2,
则直线l的直角坐标方程为3x?y?4?0.
…………………………(5分)
22(x?3)?(y?1)?4, E(Ⅱ)由(Ⅰ)可得,曲线的普通方程为
1)为圆心,2为半径的圆, 曲线E是以(3,1)到直线l:3x?y?4?0的距离为则圆心(3,d?|3?3?1?4|?12,
∴直线l被曲线E截得的弦长为24?1?23. ………………………………(10分) 23.(本小题满分10分)【选修4?5:不等式选讲】
解:(Ⅰ)当a??1时,不等式f(x)+3x≤3,可化为|x?1|?3x≤3,
?x?1≥0,?x?1?0,??x+1?3x≤3?x?1?3x≤3,∴?或?
13
解得
?1≤x≤12或x??1,
?1??xx≤?2?∴不等式f(x)+3x≤3的解集为?. ………………………………………(5分)
(Ⅱ)f(x)≤1即a?1≤x≤a?1, 而f(x)≤1的解集为[2,4], ?a?1=2,?a?1=4,∴?
解得a?3,
11?∴m2n=3(m?0,n?0),
2nm?11?2nm??2≥2g+2=4???=m2nm2nm2n?从而(m?2n)?, m?2n≥∴
2142nm11m?n?=??33,3时等号成立)3(当且仅当m2n,且m2n,即,
4∴m?2n的最小值为3.
………………………………(10分)
14