好文档 - 专业文书写作范文服务资料分享网站

2024届中考模拟金华市三校联考中考数学模拟试卷(3月)(含参考答案)

天下 分享 时间: 加入收藏 我要投稿 点赞

.

浙江省金华市三校联考中考数学模拟试卷(3月份)

一、选择题

1.计算(﹣3)+(﹣9)的结果是( ) A.﹣12 B.﹣6 C.+6 D.12

2.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示应为( )

A.0.394×105 B.3.94×104 C.39.4×103 D.4.0×104

3.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A.

B.

C.

D.

4.如图,能判定EB∥AC的条件是( )

A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE

5.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.

等边三角形 B.

平行四边形 C.

正方形 D.正五边形

6.一次函数y=2x+4的图象与y轴交点的坐标是( ) A.(0,﹣4) B.(0,4) C.(2,0) D.(﹣2,0) 7.数据1,2,3,3,5,5,5的众数和中位数分别是( ) A.5,4 B.3,5 C.5,5 D.5,3

.

.

8.已知反比例函数y=,下列结论不正确的是( ) A.图象经过点(1,1) B.图象在第一、三象限 C.当x>1时,0<y<1

D.当x<0时,y随着x的增大而增大

9.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是( )

A.五棱柱 B.六棱柱 C.七棱柱 D.八棱柱

10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )

A. B. C. D.

二、填空题 11.在函数y=

中,自变量x的取值范围是 .

12.底面半径为1,母线长为2的圆锥的侧面积等于 . 13.请你写出一个满足不等式2x﹣1<6的正整数x的值: .

14.某招聘考试分笔试和面试两种,其中笔试按60%、面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是 分.

15.如果方程ax2+2x+1=0有两个不等实根,则实数a的取值范围是 .

16.如图,在由24个边长都为1的小正三角形组成的正六边形网格中,以格点P为直角顶点作格点直角三角形(即顶点均在格点上的三角形),请你写出所有可能的直角三角形斜边的长 .

.

.

三、解答题(共66分)

17.计算:|﹣5|+(﹣1)2015+2sin30°﹣18.解方程组

19.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.

①求证:△ABE≌△CBD;

②若∠CAE=30°,求∠BDC的度数.

20.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:

(1)九(1)班的学生人数为 ,并把条形统计图补充完整;

(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是 度; (3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.

21.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)

.

.

(1)求点B距水平面AE的高度BH; (2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1米.参考数据:

1.414,

1.732)

22.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

(1)试说明DF是⊙O的切线; (2)若AC=3AE,求tanC.

23.问题探究:

(1)请在图①中作出两条直线,使它们将圆面四等分;

(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由. 问题解决:

(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.

24.如图,抛物线y=x2+mx+n与直线y=﹣x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0).

(Ⅰ)求抛物线的解析式和tan∠BAC的值; (Ⅱ)在(Ⅰ)条件下:

.

.

(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由. (2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运

动中用时最少?

.

2024届中考模拟金华市三校联考中考数学模拟试卷(3月)(含参考答案)

.浙江省金华市三校联考中考数学模拟试卷(3月份)一、选择题1.计算(﹣3)+(﹣9)的结果是()A.﹣12B.﹣6C.+6D.122.某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学记数法表示应为()A.0.394×105B.
推荐度:
点击下载文档文档为doc格式
9brcu2oxjs81m9s40mcz3j4le87moy00ja1
领取福利

微信扫码领取福利

微信扫码分享