三轮压轴专题培优练习:《四边形》
1.如图①,四边形ABCD与四边形AEFG是共一个顶点的两个大小不同的正方形. (1)操作发现,如图②,正方形AEFG绕顶点A逆时针旋转,使点E落在边AD上时,填空:
①线段BE与DG的数量关系是 ; ②∠ABE与∠ADG的关系是 .
(2)猜想与证明:如图③正方形AEFG绕顶点A逆时针旋转某一角度α(0<α<90°)时,猜想(1)中的结论是否成立?并证明你的结论;
(3)拓展应用:如图④,正方形AEFG绕点A逆时针旋转,使点F落在边AD上时,若AB=
,AE=1,则BE= .
2.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°). (I)如图①,当α=30°时,求点D的坐标;
(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;
(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).
1
3.在菱形ABCD中,∠ABC=60°,点P是对角线BD上一动点,将线段CP绕点C顺时针旋转120°到CQ,连接DQ.
(1)如图1,求证:△BCP≌△DCQ;
(2)如图2,连接QP并延长,分别交AB、CD于点M、N. ①求证:PM=QN; ②若MN的最小值为2
4.在长方形纸片ABCD中,点E是边CD上的一点,将△AED沿AE所在的直线折叠,使点D落在点F处.
(1)如图1,若点F落在对角线AC上,且∠BAC=54°,则∠DAE的度数为 °. (2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.
(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,
2
,直接写出菱形ABCD的面积为 .
求CG的长.
5.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.
(1)求证:GD=EG.
(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积. (3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在
BC上时,请直接写出G′E的长.
3
6.如图,已知正方形ABCD,AB=8,点E是射线DC上一个动点(点E与点D不重合),连接AE,BE,以BE为边在线段AD的右侧作正方形BEFG,连结CG.
(1)当点E在线段DC上时,求证:△BAE≌△BCG; (2)在(1)的条件下,若CE=2,求CG的长; (3)连接CF,当△CFG为等腰三角形时,求DE的长.
7.已知∠MAN=135°,正方形ABCD绕点A旋转.
(1)当正方形ABCD旋转到∠MAN的外部(顶点A除外)时,AM,AN分别与正方形ABCD的边CB,CD的延长线交于点M,N,连接MN.
①如图1,若BM=DN,则线段MN与BM+DN之间的数量关系是 ; ②如图2,若BM≠DN,请判断①中的数量关系是否仍成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,当正方形ABCD旋转到∠MAN的内部(顶点A除外)时,AM,AN分别与直线BD交于点M,N,探究:以线段BM,MN,DN的长度为三边长的三角形是
4
何种三角形,并说明理由.
8.我们把对角线互相垂直的四边形叫做垂直四边形.
(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;
(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;
(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.
9.在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.
5