第一章 集合与函数概念
〖1.1〗集合
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法
N表示自然数集,N?或N?表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.
(3)集合与元素间的关系
对象a与集合M的关系是a?M,或者a?M,两者必居其一. (4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x|x具有的性质},其中x为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(?).
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等 名称 记号 意义 (1)A?A A中的任一元素都属于B (2)??性质 示意图 A?B 子集 (或B?A) A?B ?A (3)若A?B且B?C,则A?C (4)若A?B且B?A,则A?B (1)??A(A为非空子集) ?A(B)BA或 真子集 (或B?A) ?A?B,且B中至少有一元素不属于A BA(2)若A?B且B?C,则??A?C ? 集合 相等 A中的任一元素都属A?B 于B,B中的任一元素都属于A (1)A?B (2)B?A A(B) (7)已知集合它有2nA有n(n?1)个元素,则它有2n个子集,它有2n?1个真子集,它有2n?1个非空子集,
?2非空真子集.
(8)交集、并集、补集
1
【1.1.3】集合的基本运算
名称 记号 意义 性质 示意图 交集 AIB {x|x?A,且x?B} {x|x?A,或x?B} 并集 AUB AIA?A (2)AI??? (3)AIB?A AIB?B (1)AUA?A (2)AU??A (3)AUB?A AUB?B (1)1AI(e 2AU(e UA)?UUA)??AB AB 补集 eUA {x|x?U,且x?A} 痧U(AIB)?(UA)U(?UB)痧U(AUB)?(UA)I(?UB) 【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
不等式 解集 |x|?a(a?0) {x|?a?x?a} |x|?a(a?0) 把x|x??a或x?a} ax?b看成一个整体,化成|x|?a,|ax?b|?c,|ax?b|?c(c?0) |x|?a(a?0)型不等式来求解 (2)一元二次不等式的解法
判别式 ??b2?4ac 二次函数??0 ??0 ??0 y?ax2?bx?c(a?0)的图象 O 一元二次方程ax2?bx?c?0(a?0)的根 ?b?b2?4acx1,2?2a(其中x1x1?x2??b 2a无实根 ?x2) {x|x??ax2?bx?c?0(a?0)的解集 {x|x?x1或x?x2} b} 2aR 2
ax2?bx?c?0(a?0)的解集 {x|x1?x?x2}
〖1.2〗函数及其表示 【1.2.1】函数的概念
? ? (1)函数的概念
①设
A、B是两个非空的数集,如果按照某种对应法则f,对于集合
A中任何一个数x,在集合B)
中都有唯一确定的数叫做集合
那么这样的对应(包括集合A,B以及A到B的对应法则ff(x)和它对应,
A到B的一个函数,记作f:A?B.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法
①设a,b是两个实数,且a?b,满足a?x?b的实数x的集合叫做闭区间,记做[a,b];满足
a?x?b的实数x的集合叫做开区间,记做(a,b);满足a?x?b,或a?x?b的实数x的
集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x?a,x合分别记做[a,??),(a,??),(??,b],(??,b). 注意:对于集合{x|a??a,x?b,x?b的实数x的集
x?b}与区间(a,b),前者a可以大于或等于b,而后者必须
a?b.
(3)求函数的定义域时,一般遵循以下原则:
①②③
f(x)是整式时,定义域是全体实数.
f(x)是分式函数时,定义域是使分母不为零的一切实数.
f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤
y?tanx中,x?k???2(k?Z).
⑥零(负)指数幂的底数不能为零. ⑦若
f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数
3
的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域应由不等式a?f(x)的定义域为[a,b],其复合函数f[g(x)]g(x)?b解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数
y?f(x)可以化成一个系数含有y的关于x的二次方程
a(y)x2?b(y)x?c(y)?0,则在a(y)?0时,由于x,y为实数,故必须有??b2(y)?4a(y)?c(y)?0,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为
三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间
的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念
①设
A、B是两个集合,如果按照某种对应法则f,对于集合
A中任何一个元素,在集合B中都有
)叫做集合
唯一的元素和它对应,那么这样的对应(包括集合
A,B以及A到B的对应法则fA到
B的映射,记作f:A?B.
②给定一个集合
A到集合B的映射,且a?A,b?B.如果元素a和元素b对应,那么我们把元素
b叫做元素a的象,元素a叫做元素b的原象.
4
〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法 函数的 性 质 定义 如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x< x时,都12.....有f(x)
y?f[g(x)],令u?g(x),若
y?f(u)为增,
u?g(x)为增,则
y?f[g(x)]为增;若y?f(u)为减,u?g(x)为减,则y?f[g(x)]为增;若y?f(u)为
增,u?g(x)为减,则y?f[g(x)]为减;若y?f(u)为减,u?g(x)为增,则y
y?f[g(x)]为减.
(2)打“√”函数
af(x)?x?(a?0)的图象与性质
xo
x
f(x)分别在(??,?a]、[a,??)上为增函数,分别在[?a,0)、(0,a]上为减函数.
(3)最大(小)值定义 ①一般地,设函数
y?f(x)的定义域为If(x)?M;
,如果存在实数M满足:(1)
对于任意的x?I,都有 (2)存在
x0?I,使得f(x0)?M.
.那么,我们称M是函数f(x) 的最大值,记作
fmax(x)?M 5