好文档 - 专业文书写作范文服务资料分享网站

雷电基本知识

天下 分享 时间: 加入收藏 我要投稿 点赞

雷电是雷雨云之间或在云地之间产生的放电现象,雷雨云是产生雷电的先决条件。那么雷雨云是怎样形成的?

一、雷雨云的形成

(一)雷雨云的宏观结构

雷雨云是对流云发展的成熟阶段,它往往是从积云发展起来的。发展完整的对流云,其生命史可以分为以下三个阶段:

1. 形成阶段:这一阶段主要是从淡积云向浓积云发展。

云的垂直尺度有较大的增长,云顶轮廓逐渐清楚,呈圆孤状或菜花形,云体耸立成塔状。这样的云我们在盛夏常常看到。在形成阶段中,云中全部为比较规则的上升气流,在云的中、上部为最大上升气流区。上升气流的垂直廓线呈抛物线型。在形成阶段,一般不会产生雷电。

2. 成熟阶段:从浓积云发展成积雨云,就伴随雷电活动

和降水,这是成熟阶段的征象。在成熟阶段,云除了有规则的上升气流外,同时也有系统性的下沉气流。上升气流通常在云的移动方向的前部。往往在云的右前侧观测到最强的上升气流。上升气流一般在云的中、上部达到最大值,可以超过1)。

3. 消散阶段:一阵电闪雷鸣、狂风暴雨之后,雷雨云就

进入了消散阶段。这时,云中已为有规则的下沉气流所控制。云体逐渐崩溃,云上部很快演变成中、高云系,云底有时还有一些碎积云或碎层云。

25—30米/秒(见图

图1 一块雷雨云的气流结构示意图

(二)雷雨云的微物理结构:

一块成熟的雷雨云,其顶部可以伸展到-40℃的高度(约l万米以上),而云底部的温度却在10℃以上。由于云体在垂直方向上跨过了这么宽的温度范围,因而云中水汽凝结物的相态就很不一样。在云中有水滴,过冷却水滴、雪晶、冰晶等(见图2)。我们把雷雨云按温度高低来分层,便可以看:在温度高于0℃的“暖层”的云中,全部是水滴(包括云滴),在温度0至-8℃的云层中,即有较多的过冷却水滴(温度低于0℃的水滴),也有一些雪晶、冰晶;在温度低于-20℃的云层中,由于过冷却水滴自然冻结的概率大为增加,云中冰晶的天然成冰核作用更为显著,故云中基本上都是雪晶和冰晶了。在成熟阶段的雷雨云中,发生着非常复杂的微物理过程,在云的“暖层”,有水滴之间由于大小不同而发生的重力碰撞,也有湍流碰撞和电、声碰撞过程。同时,有大水滴在气流作用下发生变形,破碎而产生“连锁反应”;还有由云的“冷层”中掉到“暖层”中来的大雪花、霰等的融化等。在温度0℃至-20℃的云层中,水汽由液态往固态转移十分活跃,冰、雪晶的粘连,大冰晶破碎等也很频繁。在低于-20℃的云层中,也还有冰晶之间的粘连和大冰晶的破碎过程发生。在雷雨云中发生的所有这此微物理过程,都可以导致云中水汽凝结物电学状态的改变,对于雷雨云的起电有十分重要的贡献。

图2 一块雷雨云的微物理结构示意图

(三)雷雨云起电机理

雷雨云起电的机理目前主要有四种理论:

i. 水滴破裂效应:云中水滴在高速气流中作激烈运动,分

裂成一些带负电的较大颗粒和带正电的较小颗粒,后者同时被上升气流携带到高空,前者落在低空,这样正负两种电荷便在云层中被分离,这也就是造成负电的原因。 ii.

吸电荷效应:由于宇宙射线或其它电离作用,大气中存

90%的云层下部带

在正负离子,又因为空间存在电场,在电场力的作用下正负离子在云的上下层分别积累,从而使雷雨云带电,又称感应起电。 iii.

水滴冻冰效应:水滴在结冰过程中会产生电荷,冰晶带

正电荷,水带负电荷,当上升气流把冰晶上的水分带走时,就会导致电荷的分离,而使雷雨云带电。 iv.

温差起电效应:实验证明在冰块中存在着正离子(H+)

和负离子(OH-),在温度发生变化时,离子发生扩散运动并相互分离。积雨云中的冰晶和雹粒在对流的碰撞和摩

擦运动中会造成温度差异,并因温差起电,带电的离子又因重力和气候作用而分离扩散,最后达到一定的动态平衡。

综上所述,雷雨云起电可能是某一机理也可能是多种机理的效应而产生的。

二、闪电

由于雷雨云中不同部位聚集着不同极性的电荷,当电荷积累到一定程度时,在云团之中,云团与云团之间,云团与地面之间会产生很强的电场,当电场强度达到空气击穿强度时,便会发生正负电荷之间的放电现象,这种瞬间的强火花放电就是闪电。闪电的雷击过程中产生了强大的雷电流(目前观测到的最大雷电电流幅值为430KA)和高电压(雷电通道两端电位差可达上万伏),因此按功率为电压与电流之积计算,雷电具有极强大的功率,从而构成一次爆炸过程。雷电直击到地面的建筑物和各种生物上,因其电效应,热效应和机械力会造成严重的破坏和灾害。雷电的强大的破坏力,主要是由于它把雷云蕴藏的能量在极短促的几十微秒中释放出来,它的功率巨大,但是由于放电时间太短,以功率乘以时间得出功的数值却很小,只有几十千瓦小时。这里主要讲的是直击雷,对雷击电磁脉冲将在后边章节着重介绍。

(一)闪电的分类

闪电可以按其形状分为:线状闪电、带状闪电、片状闪电,联球状闪电和球型闪电。

? 线状闪电:最常见的一种闪电,我们常常看到这种闪

电呈倒置的树枝状,其实是若干次线状闪电的组合,由于几次发生闪电之间的时间极短,用肉眼很难分辨出。

? 带状闪电:仍是线状闪电的一种,只不过是在闪电过

程中恰巧有水平大风吹经闪电通道的空间,将几次线状闪电放电的通道吹的分开,用肉眼看去闪电通道变宽了。

? 片状闪电:线状闪电被云体遮住了,闪电的光照亮了

上部的云或反射的光映入人眼中,闪电呈片状的亮光。

? 球状闪电:又称球型雷、滚地雷,不但出现在雷雨天

气中,在晴天时也偶有出现。其形状大多是球形,直径可达几十厘米,多呈橙色和红色,有些还带有硫磺或臭氧的味道。球型雷多顺风或沿着物体移动,但也发现过垂直运动或逆风而动的情况。对它的起因有许多不同的假设,至今未探明其奥秘。

? 联珠状闪电:很少见的一种闪电,有人认为它是一串

球型雷组成的。

闪电也可按其发生的空间位置而分成:云内闪电、云际闪电(云闪)、云地闪电(地闪)等。其中地闪又称直击雷、落地雷,是防雷研究的主要对象。

(二)地闪的结构

在雷云对地的放电中,90%左右的地闪是在负极性的雷云和正极性的大地(含地面建筑物等)之间发生的,一般称为负极性雷击。相反,约有10%的雷击呈正极性。因此,且以负极性雷击为例说明地闪的结构和过程。

在负极性雷云的感应下,地面呈现正极性电荷,并且随电场分布的变化可以迅速集中到某个地点。然而,雷云与大地电场之间的空气仍然是绝缘的,必须形成导电通道,地闪才能发生。于是,在大气电场强度达到一定程度时,大气中的电子有足够大的动能撞击空气分子,使其电离并加入撞击,这种现象如同雪崩,为形成雷电通道起开路先锋的作用。雷电随着雷电通道的开辟而向地面探索着前进。这种梯级先导称为流柱,流柱在寻找一条电阻最小的通道,有时遇到阻力,便另辟通道,于是空中便出现了不同形状的枝叉。在经过多次放电,消失,再放电,再消失之后,梯级先导的通道前端已到达离地面很近的距离(10m~100m),这时它的趋向开始受到地面物体的影响。可以这样理解,从通道前端伸出一支长10m~100m的长臂向四周探索着,这个臂长叫做“击距”在标准中叫做“滚球半径”其长短与雷电流幅值大小成正比。一旦接触到地面物体或与地面提前先导相会便发生了闪击,从地面物上冲出一股明亮的光柱,沿放电主通道达到雷云,完成一次回击放电或主放电。几十毫秒之后,由雷云中伸出一条较暗的光柱,沿已开辟的主放电通道冲向地面,这就是第二次回击放电,以及第三、四次,最多达26次放电。这种多次放电只见于负极性雷击,正极性雷击只有一次放电。另有一种叫长时间放电雷击。雷击的三种形式见图6、图7和图12。

雷电基本知识

雷电是雷雨云之间或在云地之间产生的放电现象,雷雨云是产生雷电的先决条件。那么雷雨云是怎样形成的?一、雷雨云的形成(一)雷雨云的宏观结构雷雨云是对流云发展的成熟阶段,它往往是从积云发展起来的。发展完整的对流云,其生命史可以分为以下三个阶段:1.形成阶段:这一阶段主要是从淡积云向浓积云发展。云的垂
推荐度:
点击下载文档文档为doc格式
9adnp1il9y6d7jn4l22n
领取福利

微信扫码领取福利

微信扫码分享