心理统计学学习的几点哲学思考
王建业
【摘 要】为阐述哲学原理及方法论在心理统计学学习中的运用,文章以哲学与统计学的关系为依托,结合具体统计方法技术的实例,通过对比与类比等手法,论述了“从一到多”、“整体与部分关系”及“具体问题具体分析”等哲学思想和方法论的应用,从而为心理统计的学习提供方法学上的指导。 【期刊名称】考试周刊 【年(卷),期】2012(000)018 【总页数】2
【关键词】心理统计学 哲学 方法论
一、引言
哲学是关于世界观和方法论的学说,研究自然、社会和思维的最一般的规律,在人们认识世界和改造世界的过程中发挥了重要的作用[1]。哲学在发展过程中,不仅在自身领域的研究中取得了重大进展,而且推动了其他的一些学科的诞生,如天文学、数学、教育学、美学等。统计学也当然可以归于哲学的发展框架下。因此,可以从某种程度上来讲,哲学可称为“万学之母”,抑或“元科学”。
统计学作为一门研究客体特征和规律的方法论学科,有很强的数学基础做支撑。它不但可以作为一门基础学科创造和发展理论,完善学科结构,而且可以作为一种应用型很强的学科,为人们认识世界和改造世界,进行量化研究提供强有力的工具手段。掌握好统计学,对进行科学研究,尤其是量化的科学研究必将大有裨益。然而正是由于其要求较强的数学基础,因此对于缺乏数学训练的人,
尤其是文科学生来说,对统计学的掌握就可能成为一件比较让人头疼的事情,有的甚至是“谈‘统计’色变”。即使不从理论研究的深度来学习,哪怕只是在统计学的应用层面上来掌握,强调实用性,也需要费些心思,再加上没有适当的方法,就可能更加懊恼了。但是,由于哲学对统计学起指导作用,为统计科学研究和统计工作提供一般指导原则和思维方法,因此如果能将哲学中的一些方法论知识运用到统计学习中,可能会起到事半功倍的效果。
二、哲学思想的运用
哲学的众多原理和方法论都可以作为统计学习的有力指导,本文选择三方面加以阐释。
1.“从一到多”的思想,也可以称为“从简单到复杂”的思想。事物的状态有繁有简,有的表现在量的层面上,有的则表现在质的层面上。单从量的层面上来讲,就可以看到从1个、2个到3个乃至多个的变化。比如,线性回归中,从最初的回归模型中只包含一个自变量的最简单模型到后来的回归模型中包含2个甚至更多个自变量的情况,是一种从自变量的角度来观察模型由简单到繁琐的过程[2]。再比如,从t检验到方差分析的变化。t检验可以有三种情况,即单样本t检验,独立样本t检验和配对样本t检验(后两者均可以检验两个总体的均值是否有差异,只是在具体的操作过程中有些差别)。但是对于三个及以上的均值是否存在显著差异的检验,t检验则显得力不从心了(多次两两比较可能增大一类错误的概率),而方差分析则会很好地解决这一问题,因为其不仅可以处理独立样本的问题,还可以处理重复测量的问题,在很大程度上弥补了t检验的不足[3]。不难看出,从t检验到方差分析,又是一个针对平均数个数从简单到繁琐的过程。回顾上面的例子,可以对这一形式的统计方法有一
个比较性的认识。首先,它们都是从一个向多个的变化过程。“多”个的发展是以“一”个的发展为前提的,换句话说,多个变量的模型要想发展,必须满足一个变量的单个模型发展所需要的假设条件。比如,多元回归要想进行就必须满足一元回归所要求的一系列条件(如正态性、连续性和方差齐性)。而方差分析若要进行也必须满足独立t检验所需要的条件(方差齐性)。如果不能满足,那么即使统计方法再先进,其科学性差的结果也是不容置疑的。其次,还要看到“多”与“一”的不同。这表现在:一方面,从前提假设方面来讲,“多”除了要满足“一”所需要的基本前提条件外,还有自己的额外要求。比如,多元回归中的多重共线性检验、多元正态分布及方差分析中的协方差分析。另一方面,从功能上讲,“多”的功能与“一”的功能既存在一致性,又存在区别,比如一元回归所能解决的问题运用多元回归也能解决,但是一个含有两个自变量的二元回归的功能却不能由分别以每个自变量作一次回归的两个简单回归的功能之和。对于方差分析,如前所述,亦不能分别进行多次两两比较的t检验来完成。了解这一思想后,在处理类似的情况时,便可以通过比较分清异同之处,查找前提条件,选用适当的方法。
2.“整体与部分的关系”的思想。整体是由部分组成的,整体是部分的整体,离开部分,整体即不会存在;部分是整体的部分,离开整体谈部分,部分也会丧失其原来的意义。这一思想要求我们要正确处理好整体与部分之间的关系。由于统计研究中经常会涉及处理多个变量的数据的情况,多变量及多层关系的情况,或是为了更好地分析事物之间的关系,通过假设将多个数据变为一个 (如利用平均数来代表整组数据的信息),将几个变量合并为一个(如某一概念的结构分为了几个维度),将多个相互复杂的关系合并为一个(如结构方程及利