(二)二重积分
(1)理解二重积分的概念、性质及其几何意义。 (2)掌握二重积分在直角坐标系及极坐标系下的计算方法。
六、无穷级数 (一)数项级数
(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。
(2)掌握正项级数的比值数别法。会用正项级数的比较判别法。
(3)掌握几何级数、调和级数与p级数的敛散性。 (4)了解级数绝对收敛与条件收敛的概念,会使用莱布尼茨判别法。
(二)幂级数
(1)了解幂级数的概念,收敛半径,收敛区间。 (2)了解幂级数在其收敛区间内的基本性质(和、差、逐项求导与逐项积分)。
(3)掌握求幂级数的收敛半径、收敛区间(不要求讨论端点)的方法。
七、常微分方程 (一)一阶微分方程
(1)理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解。
(2)掌握可分离变量方程的解法。
第 16 页
(3)掌握一阶线性方程的解法。 (二)二阶线性微分方程
(1)了解二阶线性微分方程解的结构。 (2)掌握二阶常系数齐次线性微分方程的解法。
第 17 页
专升本考试大纲word精品文档18页
(二)二重积分(1)理解二重积分的概念、性质及其几何意义。(2)掌握二重积分在直角坐标系及极坐标系下的计算方法。六、无穷级数(一)数项级数(1)理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。(2)掌握正项级数的比值数别法。会用正项级数的比较判别法。(3)掌握几何级数、调和级数与p级数的
推荐度:
点击下载文档文档为doc格式