好文档 - 专业文书写作范文服务资料分享网站

金融时间序列分析复习资料

天下 分享 时间: 加入收藏 我要投稿 点赞

一、单项选择题(每题2分,共20分) P61关于严平稳与(宽)平稳的关系;

弱平稳的定义:对于随机时间序列yt,如果其期望值、方差以及自协方差均不随时间t的变化而变化,则称yt为弱平稳随机变量,即yt必须满足以下条件: 对于所有时间t,有 (i)

E(yt)=μ为不变的常数;

(ii) Var(yt)=σ2为不变的常数;

(iii) γj=E[yt-μ][yt-j-μ],j=0,±1,,2,… (j为相隔的阶数)

(μ=0,cov(yt,yt-j)=0,Var(yt)=σ2时为白噪音过程,常用的平稳过程。) 从以上定义可以看到,凡是弱平稳变量,都会有一个恒定不变的均值和方差,并且自协方差只与yt和yt-j之间的之后期数j有关,而与时间t没有任何关系。 严平稳过程的定义:如果对于任何j1,,j2,...,jk,随机变量的集合(yt,

yt+j1,,yt+j2,…,yt+jk)只依赖于不同期之间的间隔距离(j1,j2,…,

jk),而不依赖于时间t,那么这样的集合称为严格平稳过程或简称为严平稳

过程,对应的随机变量称为严平稳随机变量。 P46 Xt 的k阶差分是;△

Xt=△

k-1

Xt-△

k-1

Xt-1,△ 表示差分符

号。

滞后算子;P54对于AR: Lpyt=yt-p,对于MA:L征方程为:λ则平稳

p

p-1

p-2

εt=εt-p

AR(p)模型即自回归部分的特征根—平稳性;确定好差分方程的阶数,则其特

-α1λ-α2λ-…-αp=0,若所有的特征根的│λ│<1

1

p

补充:逆特征方程为:1-α1z-α2z2-…-αpz=0,若所有的逆特征根│z│>1,则平稳。注意:特征根和逆特征方程的根互为倒数。

如:p57作业3: yt=,为二阶差分,其特征方程为:λλ+=0,解得λ1=1,λ2=,由于λ1=1,所以不平稳。

MA(q)模型Xt??t?1.1?t?1?0.24?t?2,则移动平均部分的特征根----可逆性;p88 所谓可逆性,就是指将MA过程转化成对应的AR过程 MA可逆的条件是其逆特征方程的根全部落在单位圆外,

+θ2z2+…+θpzp=0,│z│>1,

此题q为2,逆特征方程为:z+z2=0,

即1+θ1z

1

解得:Z=

关于AR(p)模型与MA(q)的拖尾与截尾---建模观察相关图定阶;如表所示: AR(p) MA(q) ARMA(p,q) ACF 拖尾 q期后截尾 拖尾 PACF P期后截尾 拖尾 拖尾 若一序列满足ARIMA( p, d, q)模型(d > 0) , 则此序列平稳吗

答:平稳,因为ARIMA( p, d, q)模型表表示经过d次差分后的序列,其必定是平稳时间序列。

二、填空题(每题2分,共20分)。

平稳时间序列的特点:平稳时间序列的特征方程的单位根的绝对值都小于1,逆特征方程的根的绝对值都大于1。 (i)

E(yt)=μ为不变的常数;

(ii) Var(yt)=σ2为不变的常数;

(iii) γj=E[yt-μ][yt-j-μ],j=0,±1,,2,… (j为相隔的阶数)

ARMA 所对应的AR特征方程为其MA逆特征方程为

对于自回归移动平均过程ARMA(p,q):yt=c+α1 yt-1 +α2 yt-2+…+αp

yt-p+εt+θ1εt+θ2εt-2+…+θqεt-q,其对应的AR的特征方程为:λp-α1λp-1-α2λp-2-…-αp=0,MA的逆特征方程为:1+θ1z

1

+θ2z2+…+θpz=0

?t~WN(0,??2),则E(xt)=

p

已知AR(1)模型为:xt?2?0.7xt-1??t,20/3 ,偏自相关系数?11= 。

设{xt}为一时间序列,B为延迟算子,则B2yt?yt-2 。

如果观察序列的时序图平稳,并且该序列的自相关图拖尾,偏相关图1阶截尾,则选用什么ARMA模型来拟合该序列

ARMA模型包括:AR(),MA().ARMA()。

由此表可知 AR(p) MA(q) ARMA(p,q) ACF 拖尾 q期后截尾 拖尾 PACF P期后截尾 拖尾 拖尾 应选用AR(1)模型来拟合该序列,

条件异方差模型记号: ARCH(p),

GARCH(p,q),GARCH-in-Mean,TGARCH,EGARCH,PGARCH,CGARCH,

三、计算题( 共4小题,每小题5分,共20分) P57 运用滞后算子得出其逆特征方程

1-α1z-α2z2-…-αpz=0。或用特征方程::pp-1p-2

λ-α1λ-α2λ-…-αp=0

例p57(1).yt=,

为二阶差分,其特征方程为:λλ+=0,解得λ1=1,λ2=,由于λ1=1,所以不平稳。为一阶单整。

对下列ARIMA模型,求E(?Yt)和Var(?Yt)。

Yt?3?Yt?1?et?0.75et?1 (et为零均值、方差为?e2的白噪声序列)

?E(?Yt)?E(3?et?0.75et?1)?3?252 ?22Var(?Y)?Var(3?e?0.75e)?(1?0.75)???ettt?1e?16?

1p

关于上面答案的分析:var表示方差,因为白噪音为均值为零、相关系数 cov(yt,yt-j)=0也为零,又方差为?e2,所以得到以上运算结果; 注意方差的运算及性质:

1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX)=C2?D(X) (常数平方提取); 3.当X与Y相互独立时,D(X±Y)=D(X)+D(Y)

4.当X与Y不独立时,D(X±Y)=D(X)+D(Y)+cov(X,Y)

对于ARMA过程 写出其自回归部分ar()及移动平均部分 ma()的特征方程,并求出其各自的特征根,进而判断所给定的过程是否稳定是否可逆 对于自回归移动平均过程ARMA(p,q):

yt=c+α1 yt-1 +α2 yt-2+…+αp

yt-p+εt+θ1εt+θ2εt-2+…+θqεt-q,其对应的AR的特征

金融时间序列分析复习资料

一、单项选择题(每题2分,共20分)P61关于严平稳与(宽)平稳的关系;弱平稳的定义:对于随机时间序列yt,如果其期望值、方差以及自协方差均不随时间t的变化而变化,则称yt为弱平稳随机变量,即yt必须满足以下条件:对于所有时间t,有(i)E(yt)=μ为不变的常数;(ii)Var(yt)=σ2为不变的常数;(iii
推荐度:
点击下载文档文档为doc格式
99rkk5bah15gf8x599ez10e609m8f001b82
领取福利

微信扫码领取福利

微信扫码分享