酷酷酷酷酷酷酷酷酷酷酷酷酷酷140×41×811120×121×241=×3×9×-×=7 280. 2626答案:7 280
7.等差数列{an}的前n项和为Sn,数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,
a5-2b2=a3.
(1)求数列{an}和{bn}的通项公式; 2??,n为奇数,(2)若cn=?Sn??bn,n为偶数,
设数列{cn}的前n项和为Tn,求T2n.
解析:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q. ∵a1=3,b1=1,b2+S2=10,a5-2b2=a3,
?q+3+3+d=10,?
∴???3+4d-2q=3+2d,
∴d=2,q=2. ∴an=2n+1,bn=2(2)由(1)知,Sn=
n-1
. +2n+
2
=n(n+2),
n11??-,n为奇数,nn+2∴cn=???2n-1,n为偶数.
111112n1352n-1
∴T2n=(1-+-+…+-)+(2+2+2+…+2)=+
3352n-12n+12n+18.已知数列{an}满足+2+3+…+n=n+n.
2222(1)求数列{an}的通项公式; -
(2)若bn=
2
nn-3
. a1a2a3an2
an,求数列{bn}的前n项和Sn.
解析:(1)+2+3+…+n=n+n ①,
2222
∴当n≥2时,+2+3+…+n-1=(n-1)+n-1 ②,
2222①-②得,n=2n(n≥2),∴an=n·22
a1a2a3an2
a1a2a3an-1
2
ann+1
(n≥2).
n+1
当n=1时,=1+1,a1=4也适合,∴an=n·2
2(2)由(1)得,bn=
-2
na1
.
1
2
3
an=n(-2),∴Sn=1×(-2)+2×(-2)+3×(-2)+…+
n 6
酷酷酷酷酷酷酷酷酷酷酷酷酷酷n×(-2)n ③,
-2Sn=1×(-2)+2×(-2)+3×(-2)+…+(n-1)×(-2)+n×(-2)③-④得,3Sn=(-2)+(-2)+(-2)+…+(-2)-n×(-2)
2
3
2
3
4
nn+1
④,
nnn+1
-2[1--=
3
]
-
n×(-2)n+1,
∴Sn=-
n+
-9
n+1
+2.
7