结构力学2课后概念题答案(龙驭球)
概念 题
1.1 结构动力计算与静力计算的主要区别是什么?
答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力 分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力 分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。
1.2 什么是动力自由度,确定体系动力自由度的目的是什么?
答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个 数,称为体系的动力自由度(质点处的基本位移未知量)。
确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程 数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和 动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。
1.3 结构动力自由度与体系几何分析中的自由
粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等 效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻 尼。
1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限 自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他 地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。
广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用 相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化 形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说, 对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。 有限元法:有限元法可以看成是广义坐标法的一
种特殊的应用。一般的广义坐标中,广 义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整 个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义 在分片区域的。在有限元分析中,形函数被称为插值函数。
综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似, 有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数), 而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相 比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量 法相同。
——————————————————————————————————————— 2.1 建立运动微分方程有哪几种基本方法?各种方法的适用条件是什么?
答:常用的有 3 种:直接动力平衡法、虚功原理、变分法(哈密顿原理)。