好文档 - 专业文书写作范文服务资料分享网站

高等数学基础知识点归纳-参考模板

天下 分享 时间: 加入收藏 我要投稿 点赞

传播优秀Word版文档 ,希望对您有帮助,可双击去除!

第一讲 函数,极限,连续性

1、集合的概念

一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给 定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能 构成集合,因为它的元素不是确定的。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集,记作N+。 ⑶、全体整数组成的集合叫做整数集,记作Z。 ⑷、全体有理数组成的集合叫做有理数集,记作Q。 ⑸、全体实数组成的集合叫做实数集,记作R。

集合的表示方法

⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合

集合间的基本关系

⑴、子集:一般地,对于两个集合A、B,如果集合A 中的任意一个元素都是集合B 的元素,我们就 说A、B 有包含关系,称集合A 为集合B 的子集,记作A ?B。

⑵、相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中 的元素完全一样,因此集合A 与集合B 相等,记作A=B。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A,我们称集合A 是集合 B 的真子集,记作A??。

⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。

②、对于集合A、B、C,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

集合的基本运算

⑴、并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合称为A 与B 的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。

⑵、交集:一般地,由所有属于集合A 且属于集合B 的元素组成的集合称为A 与B 的交集。记作A ∩B。

即A∩B={x|x∈A,且x∈B}。

⑶、全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。 通常记作U。

⑷、补集:对于一个集合A,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U

1 / 24

传播优秀Word版文档 ,希望对您有帮助,可双击去除!

的补集。简称为集合A 的补集,记作CUA。 即CUA={x|x∈U,且x 不属于A}。 ⑸、运算公式:交换律:A∪B=B∪A A∩B=B∩A 结合律:(A∪B)∪C=A∪(B∪C) (A∩B)∩C=A∩(B∩C) 分配律:(A∪B)∩C=(A∩C)∪(B∩C) (A∩B)∪C=(A∪C)∩(B∪C) 对偶律:CU(A∪B)=CUA∩CUB CU(A∩B)=CUA∪CUB 集合中元素的个数

⑴、有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 ⑵、用card 来表示有限集中元素的个数。例如A={a,b,c},则card(A)=3。 ⑶、一般地,对任意两个集合A、B,有 card(A)+card(B)=card(A∪B)+card(A∩B)

2、常量与变量

⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化, 我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其 称 之为变量。

⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于 某两点之间的线段上点的全体。

以上我们所述的都是有限区间,除此之外,还有无限区间 [a,+∞):表示不小于a 的实数的全体,也可记为:a≤x<+∞; (-∞,b):表示小于b 的实数的全体,也可记为:-∞<x<b; (-∞,+∞):表示全体实数,也可记为:-∞<x<+∞

注:其中-∞和+∞,分别读作\负无穷大\和\正无穷大\它们不是数,仅仅是记号。

⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x 的全体称为点α的δ邻域,点

传播优秀Word版文档 ,希望对您有帮助,可双击去除!

α称为此邻域的中心,δ称为此邻域的半径。

3、函数

⑴、函数的定义:如果当变量x 在其变化范围内任意取定一个数值时,量y 按照一定的法则f 总有确 定的数值与它对应,则称y 是x 的函数。变量x 的变化范围叫做这个函数的定义域。通 常x 叫做自变量,y叫做函数值(或因变量),变量y 的变化范围叫做这个函数的值域。 注:为了表明y 是x 的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母\、\表示y 与x 之 间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确 定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只 讨论单值函数。 ⑵、函数相等

由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应 关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 3、函数的简单性态

⑴、函数的有界性:如果对属于某一区间I 的所有x 值总有│f(x)│≤M 成立,其中M 是一个与x 无关

的常数,那么我们就称f(x)在区间I 有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数。

函数的有界性,单调性应与相关点集I联系起来,离开了点集I。这些概念是没有任何意义的。 ⑵、函数的单调性:如果函数在定义域区间(a,b)内随着x 增大而增大,即:对于(a,b)内任意两点x1 及x2,当x1<x2时,有 如果函数

f(x1)?f(x2),则称函数f(x)在区间(a,b)内是单调增加的。

1

f(x)在定义域区间(a,b)内随着x 增大而减小,即:对于(a,b)内任意两点x

及x2,当x1<x2 时,有

f(x1)?f(x2),则称函数f(x)在区间(a,b)内是单调减小的。

⑶、函数的奇偶性 如果函数

f(x)对于定义域内的任意x 都满足f(?x)?f(x),则f(x)叫做偶函数;如果函数对于定

义域内的任意x 都满足

f(?x)??f(x),则f(x)叫做奇函数。

注:偶函数的图形关于y 轴对称,奇函数的图形关于原点对称。 奇偶函数的定义域必关于原点对称。 ⑷、函数的周期性 设函数

f(x)的定义域为I。若存在T?0,对任意的x?I,都使得f(x?T)?f(x)(x?T?I),则称

f(x)为周期函数,称T为其周期。

98da09bv3i2p7v43zg0p6rgfk15t3500hcn
领取福利

微信扫码领取福利

微信扫码分享