农业化肥公司的生产与销售问题
五邑大学
摘要:化肥是农作物增产增收的物质基础,是粮食的粮食,对农作物施肥是提高土壤肥力 , 改善农作物营养,提高农作物产量的重要措施。大量试验和农业生产的实践表明 ,在作物增产的诸因素中,化肥的增产作用约占40%。中国能以世界7%的耕地养活占世界约23%的人口 , 应该说一半功劳归于化肥。
某农业化肥公司下设销售部,公司生产的农业化肥要通过销售部进行销售。由于公司生产能力的制约,因此需要在满足已签约的销售合同量的基础上,对意向签约量有选择的安排生产。一方面,公司会组织安排生产,完成已签约的销售合同;另一方面,公司希望销售部门尽力争取与意向签约的客户签订正式销售合同;除此之外,公司还希望销售部门努力再多销售一些农业化肥。对于所签约的销售合同和意向签约量(计划内),公司根据销售量向销售部发放经费(包括工资以及宣传费用等);对于计划外销售的农业化肥,实行承包制,销售部向公司缴纳利润。农业化肥的生产费用由公司承担,与销售有关的费用(如农业化肥的宣传费用等)由销售部承担。
该农业化肥公司2011年计划生产三类10种农业化肥,其中包括:氮肥(N1, N2, N3)、磷肥(P1, P2, P3)、钾肥(K1, K2, K3, K4),不同的植物对N、P、K的需求是不一样的。
三类农业化肥的年最大生产能力分别为:氮肥:5万吨;磷肥:6.5万吨;钾肥6.2万吨。
问题是要求最优方案,因而可建立一个数学规划模型。设 模式中第j种化肥的销售量;售模式中第j种化肥的利润为
minjxij为第i种销售
kij为对应
xij销售量的单位利润;因此,第i种销
pij?xijkij。
基本模型:Max P???xijkij 通过数据分析,当销量少于10千吨时每种化肥单位利润和销量成线性关系,即是kij?aijxij?bij。
可得到本题的求解模型:Max P???aijxij?bijxij
2ijnm通过excel对数据处理和MATLAB拟合,最后用lingo进行编程得出问题的最优结果。
问题一求解可得公司最大利润为 191.7万元。 问题二求解可得销售部最大利润为 160.7万元。
问题三求解可得到公司和销售部总利润为 310.0万元。 问题四求解可得公司和销售部总利润为272.0万元。 问题五求解可得公司和销售部总利润为 310.6万元。
关键词:数学规划模型 线性关系 最大生产力 1、问题分析
该化肥公司的销售模式可分三种。即对计划内已签约合同客户的销售,计划内有意向签约客户的销售,还有计划外由销售部承包的销售模式。对于已签约的客户,公司必须按照签约量销售给客户,即销售量与销售利润已定。而对于意向签约客户及销售部的承包销售,公司则需要做出最优的销售方案。对于销售部,在这三种销售模式所得到的收入都不相同。前两种销售模式,销售部的收入是销售经费,最后一种的收入是销售利润。因而销售部的最优销售方案与公司的不同,需要另作方案。当考虑到客户的需求时,对于已签约的客户必须满足其需求,而对于意向签约及计划外的客户,则可根据其购买量及购买概率来确定销售方案。根据以上不同对象利益分析,下面分别讨论不同目标利益模型的建立及方案的设定。
2、模型建立 [1]
该问题是要求最优方案,因而可建立一个数学规划模型。设 xij为第i种销售模式中第j种化肥的销售量;kij为对应xij销售量的单位利润;因此,第i种销售模式中第j种化肥的利润为pij?xijkij,所以假设总利润的基本模型为:
Max P???xijkijijmn
2.1、问题(1):使公司的利润达到最大的生产和销售方案;
该公司的销售模式有已签、意向、计划外3种,由于销售模式1的利润已定,在求最大利润时可不考虑模式1的利润大小,所以设模式1为意向,模式2为计划外,即i=2。化肥有j=1,2,……,10,10种。对于模式1,利润=价格—成本—宣传费—销售经费,由附件表2、3、4、13的关系用EXCEL处理后得到下表(考虑到意向销量的限度,附表6,只取10千吨以下的数据):
表1 意向模式单位利润随销量变化的数据(万元) 销量(千吨) 1 3 5 7 10 化肥序号 1 0.848 0.663333333 0.4548 0.310857143 0.1784 2 0.9216 0.727733333 0.49248 0.341314286 0.19156 3 0.9584 0.7456 0.51232 0.355257143 0.20004 4 2.166 1.817333333 1.1924 0.813428571 0.4554 5 2.488 2.063666667 1.3784 0.934285714 0.529 6 2.5524 2.112333333 1.4108 0.962285714 0.5414 7 2.636 2.17 1.4416 0.97 0.544 8 2.82 2.326 1.5368 1.038 0.5836 2
共19页
9 2.9764 2.457333333 1.6272 1.096 0.6154 10 3.06 2.5 1.6668 1.123714286 0.6324 再用MATLAB拟合处理,得到销量在10千吨以下,单位利润与销量成线性关系。如下图:
图1 意向模式化肥1的单位利润随销量变化拟合曲线
0.90.80.70.6p(万元)0.50.40.30.20.1012345
对于模式2,利润=销售部缴纳利润,由附件表14经EXCEL处理后得到下表:
表2 计划外模式单位利润随销量变化的数据(万元 销量(千吨) 1 3 5 7 10 化肥序号 1 2.16 1.8 1.476 1.238571 1.008 2 2.352 1.968 1.6056 1.353429 1.0932 3 2.448 2.032 1.6704 1.320857 1.1388 4 5.52 4.93 3.888 3.24 2.598 5 6.36 5.596 4.488 3.728571 3 6 6.528 5.736 4.596 3.831429 3.078 7 6.72 5.9 4.692 3.857143 3.09 8 7.2 6.32 5.016 4.131429 3.312 9 7.608 6.68 5.304 4.362857 3.378 10 7.8 6.8 5.436 4.474286 3.468 再用MATLAB拟合处理,得到销量在10千吨以下,单位利润与销量成线性关系。如下图:
图2 计划外模式化肥1的单位利润随销量变化拟合曲线
67x(千吨)8910112 共19页