乐考无忧,为您的考研之路保驾护航!
2008年全国硕士研究生入学统一考试数学二试题解析
一、选择题 (1)【答案】D
【详解】因为f(0)?f(1?)f,由罗尔定理知至少有?1?(0,1,(?2))?2?(1,2)使
所以f?(x)至少有两个零点. 由于f?(x)是三次多项式,三次方程f?(x)?0的f?(?1)?f?(?2)?0,
实根不是三个就是一个,故D正确.
(2)【答案】C
a??f(x)dx?af(a)??f(x)dx 【详解】?xf?(x)dx??xdf(x)?xf(x)00000aaaa其中af(a)是矩形ABOC面积,?f(x)dx为曲边梯形ABOD的面积,所以?xf?(x)dx为曲边三
00aa角形的面积.
(3)【答案】D
【详解】由微分方程的通解中含有ex、cos2x、sin2x知齐次线性方程所对应的特征方程有根
r?1,r??2i,所以特征方程为(r?1)(r?2i)(r?2i)?0,即r3?r2?4r?4?0. 故以已知函数为
通解的微分方程是y????y???4y??4?0
(4) 【答案】A
【详解】x?0,x?1时f(x)无定义,故x?0,x?1是函数的间断点
fx(?)因为 lim?x?0lnxlim??x?0cscx?x?011xlim??lim x|?1|?x0?xcscxcotsin2xx??lim??lim?0 x?0?xcosxx?0?cosxfx(?) 0同理 lim?x?0又 limfx(?)?x?1lnxlim??x?1x?1?x?11??limx?sin???x?1?limx?? in1ssin1lnx?limsinx??sin1
x?1x?11?xx?1?所以 x?0是可去间断点,x?1是跳跃间断点.
limf(x)?lim??www.lookwell.com.cn ;免费考研辅导视频
乐考无忧,为您的考研之路保驾护航!
(5)【答案】B
【详解】因为f(x)在(??,??)内单调有界,且{xn}单调. 所以{f(xn)}单调且有界. 故{f(xn)}一定存在极限.
(6)【答案】A
【详解】用极坐标得 F?u,v????Df?u2?v2?u2?v2dudv??dv?0vuf(r2)r1rdr?v?f(r2)dr
1u所以
?F2?vf?u ??u
(7) 【答案】C
【详解】(E?A)(E?A?A2)?E?A3?E,(E?A)(E?A?A2)?E?A3?E 故E?A,E?A均可逆.
(8) 【答案】D
?1?2?【详解】记D???,
?21??则?E?D???122??1?222????1??4,又?E?A?????1??4 ??1?2??1所以A和D有相同的特征多项式,所以A和D有相同的特征值.
又A和D为同阶实对称矩阵,所以A和D相似.由于实对称矩阵相似必合同,故D正确.
二、填空题 (9)【答案】2
2sin2[xf(x)2]2sin2[xf(x)2]?f(x)【详解】limx2 ?lim?lim22x?0x?0x?0xf(x)[xf(x)2]?4(e?1)f(x)1?cos[xf(x)]?11limf(x)?f(0)?1 2x?02? 2所以 f(0)
(10)【答案】x(?e?x?C)
【详解】微分方程?y?x2e?x?dx?xdy?0可变形为
dyy??xe?x dxxwww.lookwell.com.cn ;免费考研辅导视频
乐考无忧,为您的考研之路保驾护航!
11dx???dx?1????x所以 y?ex??xeexdx?C??x??xe?x?dx?C??x(?e?x?C)
x????
(11)【答案】y?x?1
1?1Fx?dyy?x????【详解】设F(x,y)?sin(xy)?ln(y?x)?x,则,
1?dxFyxcos(xy)?y?xycos(xy)?将y(0)?1代入得
dy?1,所以切线方程为y?1?x?0,即y?x?1 dxx?0(12)【答案】(?1,?6) 【详解】y?x53?5x23?y??52310?1310(x?2)x?x? 333x13101010(x?1) ?y???x?13?x?43?999x43x??1时,y???0;x?0时,y??不存在
在x??1左右近旁y??异号,在x?0左右近旁y???0,且y(?1)??6 故曲线的拐点为(?1,?6)
(13)【答案】
2(ln2?1) 2【详解】设u?yx,v?,则z?uv xy所以
?z?z?u?z?vy1?????vuv?1(?2)?uvlun? ?x?u?x?v?xxyxyv?vylnu??y? ?u??2?????y??x??ux所以
?z2?(ln?2 1)?x(1,2)21y?????1?ln? y?x?www.lookwell.com.cn ;免费考研辅导视频
乐考无忧,为您的考研之路保驾护航!
(14)【答案】-1
【详解】??|A|?2?3???6? |2A?|32A| | ??2?3?6?1 ?4? 8 ????
三、解答题 (15)【详解】
[sinx?sin(sinx)]sinxsinx?sin(sinx)?lim方法一:lim 43x?0x?0xx12sinxcosx?cos(sinx)cosx1?cos(sinx)12 ?lim?lim?lim?x?0x?0x?03x23x23x2611方法二:??sinx?x?x3?o(x3) sin(sinx)?sinx?sin3x?o(sin3x)
66?sin4xo(sin4x)?1[sinx?sin(sinx)]sinx ???lim?lim??? ?444x?0x?0xx?6x?6
(16)【详解】
dx方法一:由?2te?x?0得exdx?2tdt,积分并由条件xt?0得ex?1?t2,即x?ln(1?t2)
dtdydydtln(1?t2)?2t 所以 ???(1?t2)ln(1?t2)
2tdxdxdt1?t2d[(1?t2)ln(1?t2)]2dyd?dy?dt2tln(1?t2)?2t ?????2dx2tdxdx?dx?dt1?t2?(1?t2)[ln(1?t2)?1]
dx?2te?x?0得exdx?2tdt,积分并由条件xt?0得ex?1?t2,即x?ln(1?t2) dtdydydtln(1?t2)?2t 所以 ???(1?t2)ln(1?t2)?exx
2tdxdxdt1?t2方法二:由
d2yx?e(x?1)所以 2dx
(17)【详解】
www.lookwell.com.cn ;免费考研辅导视频
乐考无忧,为您的考研之路保驾护航!
方法一:由于lim?x?1x2arcsinx1?x2???,故?1x2arcsinx1?x20dx是反常积分.
令arcsinx?t,有x?sint,t?[0,?2)
?1x2arcsinx1?x?2202?02dx??20??tsin2tttcos2t22costdt??tsintdt??2(?)dt
00cost22t ?41?tsin2t??2tdsin2t??04164??2?201???2sin2tdt 4021?21??cos2t?? 1681640?方法二:?1x2arcsinx1?x20dx?11122xd(arcsinx) ?02112?2122?x(arcsinx)??x(arcsinx)dx???x(arcsinx)2dx
00280 令arcsinx?t,有x?sint,t?[0,?2)
1?1?222?0x(arcsinx)dx?2?0tsin2tdt??4?02tdcos2t
122121??212??(tcos2t)??tcos2tdt??
0421640?故,原式?
?21? 164(18)【详解】 曲线xy?1将区域分成两 个区域D1和D2?D3,为了便于计算继续对 区域分割,最后为
??max?xy,1?dxdy
DD1 D3 D2 2???xydxdy???dxdy???dxdy
D1D2D3??dx?1dy??1dx?1dy??1dx?1xydy
022x120221x02www.lookwell.com.cn ;免费考研辅导视频
O 0.5 2 x