好文档 - 专业文书写作范文服务资料分享网站

中考题型-图形变换综合 

天下 分享 时间: 加入收藏 我要投稿 点赞

1.(9分)复习“全等三角形”的知识时,老师布置了一道作业题:

“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP.”

小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.(08年)

2.(10分)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.

(1)①当α= 度时,四边形EDBC是等腰梯形,此时AD的长为 ; ②当α= 度时,四边形EDBC是直角梯形,此时AD的长为 ; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.(09年)

3.(10分)(1)操作发现:

如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.

(2)问题解决:

保持(1)中的条件不变,若DC=2DF,求(3)类比探求:

保持(1)中条件不变,若DC=nDF,求

的值.(10年) 的值;

4.(10分)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出

发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(11年) (1)求证:AE=DF;

(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

(3)当t为何值时,△DEF为直角三角形?请说明理由.

5.(11分)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.(12年)

原题:如图1,在平行四边形ABCD中,点E是BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.若

=3,求

的值.

(1)尝试探究

在图1中,过点E作EH∥AB交BG于点H,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,(2)类比延伸

如图2,在原题的条件下,若

=m(m>0),则

的值是 (用含有m

的值是 .

的代数式表示),试写出解答过程. (3)拓展迁移

如图3,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F.若数式表示).

=a,=b,(a>0,b>0),则的值是 (用含a、b的代

6.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(13年) (1)操作发现

如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空: ①线段DE与AC的位置关系是 ;

②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是 .

(2)猜想论证

当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想. (3)拓展探究

已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.

7.(10分)(1)问题发现

如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE. 填空:(14年)

①∠AEB的度数为 ;

②线段AD,BE之间的数量关系为 . (2)拓展探究

如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由. (3)解决问题

如图3,在正方形ABCD中,CD=写出点A到BP的距离.

,若点P满足PD=1,且∠BPD=90°,请直接

中考题型-图形变换综合 

1.(9分)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC中,AB=AC,P是△ABC中内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图①的分析,证明了△ABQ≌△ACP,从而证得BQ=CP.之后,他将点P移到等腰三角形ABC外,原题中其它条件不变,发
推荐度:
点击下载文档文档为doc格式
97psk1hwno8n6j4879hw6x2111f27v00bdf
领取福利

微信扫码领取福利

微信扫码分享