第六单元 多边形的面积
第4课时—组合图形的面积
1 教学内容
《义务教育课程标准实验教科书数学》(人教版)五年级上册第99页
面积”。
“组合图形的
2 教学目标
2.1 知识与技能:
明确组合图形的意义,掌握用分解法或添补法求组合图形的面积。
2.2过程与方法:
能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。
2.3 情感态度与价值观:
渗透转化的教学思想,提高学生运用新知识解决实际问题的能力,在自主探索活动中培养他们的创新精神。
3 教学重点/难点/考点
3.1 教学重点:
在探索活动中,理解组合图形面积计算的多种方法,会利用正方形、长方形、平行四边形、三角形、梯形这些平面图形面积来求组合图形的面积。
3.2 教学难点:
根据图形特征采用什么方法来分解组合图形,达到分解的图形既明确而又准确求出它的面积。
3.3 考点分析:
能判断图形是由那些图形组合而成,并应用相应的公式解决实际问题,
4 教学目标依据
4.1 课程标准的要求:
《新课标》指出:“学生有效的教学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。要做到把“生活经验数学化,数学问题生活化。”变“课堂教学”为“课堂生活”,就必须把握教学规律、用活教材。故而,教师应向学生提供充分从事教学活动的机会,帮助他们在自主探索与合作交流的过程中真正理解和掌握数学知识与技能、数学思想和方法,并获得数学活动经验。根据这一教学理念,本课采用“主导
主 体 相 结 合”为 特 征 的 探 究 性 教 学 模 式 ,让 学生 在 观 察 、猜 想 、验 证 、归 纳 、交 流 中 获得新知并提高能力。
4.2 教材分析:
《组合图形的面积》一课是《义务教育课程标准实验教科书数学》(人教版)五年级上册的教学内容。在三年级时,学生已经学习了长方形、正方形的面积,在本册本单元也学习了平行四边形、三角形与梯形的面积计算,本课时的组合图形面积的计算是这方面知识的发展,也是日常生活中经常需要解决的问题。本节课让学生经历从
多角度思考,运用多种方法解决问题的过程,使学生展开讨论,根据自己已有的经验,逐步探讨出不同的方法,找到合理解决问题的策略;在合作交流学习的过程中,积累解决问题的经验,掌握解决问题的方法。
4.3 学情分析
《组合图形的面积》属于义务教育课程标准实验教材中五年级上册的内容,根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难,学生通过之前的学习对于平面图形直观感知和认识上已有了一定的基础,也掌握一些解决简单图形问题的方法,学生应进一步提高知识的综合运用能力,在学习中去探索掌握解决问题的思考策略。因此,我设计时主要是让学生自主探索,在具体的情境中领会转化的数学思想,体会并掌握计算组合图形的多种方法,并能够在比较的基础上选择最有效的方法解决实际问题。
6 教学方法
图片引入——新知讲授——巩固总结——练习提高
7 教学用具
课件、图片等。
8 教学过程
8.1 创设情境,引导探索 师:生活中有许多图形,老师今天准备了4幅,大家观察一下,这些图形是由哪些简单图形组成的?如果求它们的面积可以怎样求? 图一 图二 图三 图四 课件逐一出示图一、图二、图三,图四让学生发表意见。 生1:小房子的表面是由一个三角形和一个正方形组成的。 生2:风筝的面是由四个小三角形组成的。 生3:队旗的面是由一个梯形和一个三角形组成的。 生4:七巧板是由三角形,长方形,正方形和平行四边形组成的。 师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形? 生1:由两个或两个以上的图形组成的是组合图形。 生2:有几个平面图形组成的图形是组合图形。 师小结:组合图形是由几个简单的图形组合而成的。
图一:是由三角形、长方形、加上长方形中间的正方形组成的,
面积= 三角形面积+长方形面积-正方形面积 图二:作辅助线使它分成一个大梯形和一个三角形。
方法一:分割法:将整体分成几个基本图形,求出它们的面积和。 是由两个梯形组成的。
师:为什么要分成两个梯形?怎样分成两个梯形?
引导学生说出将它转化成以学过的简单图形以及在图中作辅助线。
师:是的,可以用作辅助线的方法将它转化成以前学过的简单图形来计算。 (板书:转化)
大家想想,用辅助线的方法还有不同的作法吗?
方法二:添补法:用一个大图形减去一个小图形求出组合图形的面积。 作辅助线补成一个长方形,使它变成一个大长方形减去一个三角形
图三:是由四个三角形组成的。
面积 = 三角形面积+三角形面积+三角形面积+三角形面积
8.2 新知探究
(一)右图表示的是一间房子侧面墙的形状,它的面积是多少平方米? ( 三角形+正方形 )
2m 5m
5m
右图表示的是一间房子侧面墙的形状,它的面积是多少平方米? ( 两个完全一样的梯形)
2m 5m 5m (二)计算组合图形的面积,一般是把它们分割成基本图形,如长方形、正方形、三角形、梯形等,再计算它们的面积。