龙源期刊网 http://www.qikan.com.cn
一维光子晶体的应用发展
作者:江帅璋
来源:《新教育时代·学生版》2016年第33期
摘 要:一维光子晶体是介质特定的在一个方向上具有周期性的结构,在另外的两个方向上却是均匀性分布的。结构比较简单的一维光子晶体一般是两种介质交替叠层而形成的,这种一维光子晶体在垂直于介质层平面方向的介电常数是随空间位置的改变而改变的,而在平行于介质层平面方向的介电常数并不随空间位置的改变而改变。这种光子晶体在光纤和半导体激光器上已经得到了运用,布拉格光纤和半导体激光器的分布反馈式谐振腔事实上就是一维光子晶体。因为一维光子晶体制作简单,结构简单,所以一维光子晶体被大家广泛的关注。在最早期的时候,因为一维光子晶体特定的在一个方向上表现有周期性的结构,所以光子禁带也只在这个方向上出现,之后Joannopoulos和他的同事们根据理论和仿真得到一维光子晶体应该有全方向的三维带隙结构,因此一维光子晶体也能够具备二,三维光子晶体所具有的特性,所以一维光子晶体被人们更加普遍的应用到了研究中。 关键词:一维光子晶体 周期性 介电常数 一、一维光子晶体的研究进展与应用
一维光子晶体具有制作简易和控制光的传播形式优异性等优势,让一维光子晶体在不一样的研究中得到了广泛的关注。这些年一维光子晶体在研究领域取得了一些明显的进展。因为一维光子晶体拥有三维材料的全向能隙结构,所以可以将一维光子晶体应用到二维和三维器件的设计当中;一维光子晶体有高增益的局域广场以及光延迟效应,能够导致一些非线性效应,比如说谐波的产生、光学双稳态等;并且一维光子晶体也具有超折射现象,而且因为它有控制光模式以及光传输的优异性能,所以一维光子晶体在光子晶体的应用中占据着主要地位。下面我们从三个方面介绍一维光子晶体的特点和应用,分为物理机制和效应两个角度。[1] 1.全向能隙结构
1998年,因为一维光子晶体的边界是有限制的,所以出现了跟二维光子晶体和三维光子晶体相像的全向能隙结构。虽然金属材料的反射镜的反射率跟入射角度没有关系,但是金属材料是吸收电磁波的,所以金属材料的反射率并不高。以前的多层高反膜会因为入射角度的增加其反射率降低。一维光子晶体可以产生一个不跟入射光偏正方向以及入射角有关联的较宽的全向带隙,解决了金属材料反射率不高的难题。除了反射镜外,一维光子晶体能够普遍的运用到微波天线、透射光栅、光波导等器件的研制中。[2~6] 2.布儒斯特角的控制