七、在特殊的三角形中,有的相似,有的不相似.
1、两个全等三角形一定相似. 2、两个等腰直角三角形一定相似.
3、两个等边三角形一定相似. 4、两个直角三角形和两个等腰三角形不一定相似.
八、如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两
个图形叫做位似图形。这个点叫位似中心,这时的相似比又称为位似比。 位似图形上任意一对对应点到位似中心的距离之比等于位似比。
九、常考知识点:1、比例的基本性质,黄金分割比,位似图形的性质。
2、相似三角形的性质及判定。相似多边形的性质。
第五章 数据的收集与处理
(1)普查的定义:这种为了一定目的而对考察对象进行的全面调查,称为普查.
(2)总体:其中所要考察对象的全体称为总体。
(3)个体:组成总体的每个考察对象称为个体
(4)抽样调查:(sampling investigation):从总体中抽取部分个体进行调查,这种调查称为抽样调查.
(5)样本(sample):其中从总体中抽取的一部分个体叫做总体的一个样本。
(6)当总体中的个体数目较多时,为了节省时间、人力、物力,可采用抽样调查.为了获得较为
准确的调查结果,
抽样时要注意样本的代表性和广泛性.还要注意关注样本的大小.
(7)我们称每个对象出现的次数为频数。而每个对象出现的次数与总次数的比值为频率。
(8)数据波动的统计量:
极差:指一组数据中最大数据与最小数据的差。 方差:是各个数据与平均数之差的平方的平均数。
标准差:方差的算术平方根。 要求:识记其计算公式。 一组数据的极差,方差或标准差越小,这组数据就越稳定。 还要知道平均数,众数,中位数的定义。 刻画平均水平用:平均数,众数,中位数。 刻画离散程度用:极差,方差,标准差。
常考知识点:1、作频数分布表,作频数分布直方图。 2、利用方差比较数据的稳定性。
3、平均数,中位数,众数,极差,方差,标准差的求法。 4、频率,样本的
定义
第六章 证明
一、对事情作出判断的句子,就叫做命题. 即:命题是判断一件事情的句子。
一般情况下:疑问句不是命题.图形的作法不是命题.
每个命题都有条件(condition)和结论(conclusion)两部分组成. 条件是已知的事项,结论是由已知事项推断出的事项.
一般地,命题都可以写成“如果??,那么??”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.
要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例。
二、三角形内角和定理:三角形三个内角的和等于180度。
1、证明三角形内角和定理的思路是将原三角形中的三个角“凑”到一起组成一个平角.
一般需要作辅助线.既可以作平行线,也可以作一个角等于三角形中的一个角. 2、三角形的外角与它相邻的内角是互为补角.
三、三角形的外角与它不相邻的内角关系是:
(1)三角形的一个外角等于和它不相邻的两个内角的和. (2)三角形的一个外角大于任何一个和它不相邻的内角.
四、证明一个命题是真命题的基本步骤是: (1)根据题意,画出图形. (2)根据条件、结论,结合图形,写出已知、求证.
(3)经过分析,找出由已知推出求证的途径,写出证明过程.
在证明时注意:(1)在一般情况下,分析的过程不要求写出来.
(2)证明中的每一步推理都要有根据。如果两直线都和第三条直线平行,那么
这两条直线也相互平行。
(3)所对的直角边是斜边的一半。斜边上的高是斜边的一半。
常考知识点:1、三角形的内角和定理,及三角形外角定理。
2、两直线平行的性质及判定。
3、命题及其条件和结论,真假命题的定义。
北师大版初中数学九年级(上册)各章知识点
第一章 证明(二)
一、公理(1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。
(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)。 (4)全等三角形的对应边相等、对应角相等。
推论:两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。
二、等腰三角形
1、等腰三角形的性质
(1)等腰三角形的两个底角相等(简称:等边对等角)
(2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)。 等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则