6、在作较复杂图形时,涉及基本作图的地方,不必重复作图的详细过程,只用一句话概括叙述就可以了。
(1)画线段××=××; (2)画∠×××=∠×××; 第三章 生活中的数据 单位换算 科学记数法 近似数 生活中的数据 精确数 有效数 字 精确度 统计图(象形统计图) 一、单位换算 1、长度单位:
(1)百万分之一米又称微米,即1微米=10-6米。 (2)10亿分之一米又称纳米,即1纳米=10-9米。 (3)1微米=103纳米。
(4)1米=10分米=100厘米=103毫米=106微米=109纳米。 2、面积单位
(1)10-6千米2=1米2=102分米2=104厘米2=106毫米2=1012微米2=1018纳米2。 3、质量单位
(1)1吨=103千克=106克。
二、科学计数法表示绝对值小于1的较小数据
1、用科学计数法表示绝对值小于1的较小数据时,也可以表示为a×10n的形式,其中1≤〡a〡<10,n为负整数,n等于这个数的第一个不为零的数字前面所有零的个数( 包括小数点前面的一个零)的相反数。 三、近似数与精确数
1、精确数是指一个物体或描述一事件的真实数值。
2、近似数是指用测量或统计的方法、四舍五入、估计等得到的数。 3、近似数产生的原因有:
(1)由于测量工具和测量方法的局限性不可能得到物体的准确值; (2)有些事件也不可能或没有必要得出它的精确值。
4、近似数a的真值的范围大于或等于a与它的最末位的半个单位的差而小于a与它的最末位的半个单位的和。例如近似数1.60的真值范围为大于或等于1.595而小于1.605。 四、有效数字
1、对于一个近似数,从左边第一个不为零的数字起,到精确到的数位为止,所有的数字都叫这个数的有效数字。
2、对于科学计数法型的近似数,由a×10n(1≤〡a〡<10)中的a来确定,a的有效数字就是这个近似数的有效数字。与× 10n无关。
3、对带有记数单位的近似数,由数字来确定,与单位无关。 五、近似数的精确度
1、近似数的精确度是近似数精确的程度。
2、近似数四舍五入到哪一位,就说这个近似数精确到哪一位。
3、精确度是由该近似数的最后一位有效数字在该数中所处的位置决定的。
4、对于单独一个近似数,根据最后一位有效数字在该数中所处的位置直接确定精确度。
5、对用科学记数法表示的数应注意将其还原为原来的数后,再确定其精确度。 6、对带单位的近似数,也要还原为原来的数后再确定其精确度。 7、对近似数进行取舍时需要注意一般形式与科学记数法形式。 六、统计图(表)
1、条形统计图:能清楚地表示出每个项目的具体数目。 2、折线统计图:能清楚地反映事物的变化情况。
3、扇形统计图:能清楚地表示出各部分在总体中所占的百分比。 4、象形统计图:能直观地反映数据之间的意义。
5、从统计图中获取更多的有用信息,应做到以下几步:
(1)审清统计图横轴和纵轴代表的意义,若是象形统计图则要看准每个形象图标代表什么意义;
(2)把各部分的数据找出来;
(3)以图中读出的信息作为参考(已知),推测相关量的变化趋势或规律; (4)对需要计算后回答的信息要准确地进行计算。 6、制作象形统计图
(1)象形统计图比一般的统计图更直观、更简洁生动,极富有个性和情感,但准确性差一些。
(2)制作象形统计图没有固定的格式,需要具有较强的想像力和创造力。 (3)制作象形统计图: 一是要明确制作的统计图的特点; 二是要结合具体问题,分析数据特点和规律,通过设计简明、直观、形象的统计图,加深对问题的理解。 第四章 概率 必然事件 事件 不可能事件 不确定事件 概率 等可能性 游戏的公平性 概率的定义 概率 几何概率 设计概率模型 一、事件
1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
5、三种事件都是相对于事件发生的可能性来说的,若事件发生的可能性为100%,则为必然事件;若事件发生的可能性为0,则为不可能事件;若事件不一定发生,即发生的可能性在0∽1之间,则为不确定事件。
6、简单地说,必然事件是一定会发生的事件;不可能事件是绝对不可能发生的事件;不确
定事件是指有可能发生,也有可能不发生的事件。 7、表示事件发生的可能性的方法通常有三种: (1)用语言叙述可能性的大小。 (2)用图例表示。 (3)用概率表示。 二、等可能性
1、等可能性:是指几种事件发生的可能性相等。
2、游戏规则的公平性:就是看游戏双方的结果是否具有等可能性。
(1)首先要看游戏所出现的结果的两种情况中有没有必然事件或不可能事件,若有一个必然事件或不可能事件,则游戏是不公平的;
(2)其次如果两个事件都为不确定事件,则要看这两个事件发生的可能性是否相同;即看双方获胜的可能性是否相同,只有双方获胜的可能性相同,游戏才是公平的。
(3)游戏是否公平,并不一定是游戏结果的两种情况发生的可能性都是二分之一,只要对游戏双方获胜的事件发生的可能性一样即可。 三、概率
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。 2、必然事件发生的概率为1,记作P(必然事件)=1; 3、不可能事件发生的概率为0,记作P(不可能事件)=0;
4、不确定事件发生的概率在0∽1之间,记作0
(1)直接数数法:即直接数出所有可能出现的结果的总数n,再数出事件A可能出现的结果数m,利用概率公式 直接得出事件A的概率。
(2)对于较复杂的题目,我们可采用“列表法”或画“树状图法”。 四、几何概率
1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。 2、求几何概率:
(1)首先分析事件所占的面积与总面积的关系; (2)然后计算出各部分的面积; (3)最后代入公式求出几何概率。 五、设计概率模型(游戏或事件)
1、设计符合要求的简单概率模型(游戏或事件)是对概率计算的逆向 运用。 2、设计通常分四步:
(1)首先分析设计应符合什么条件; (2)其次确定选用什么图形表示更合理;
(3)然后再按一定要求和操作经验来设计模型;
(4)最后再通过计算或其他方法来 验证设计的模型是否符合条 件。 第五章 三角形 三角形三边关系 三角形 三角形内角和定理
角平分线 三条重要线段 中线 高线 全等图形的概念 全等三角形的性质 SSS 三角形 SAS 全等三角形 全等三角形的判定 ASA AAS HL(适用于RtΔ) 全等三角形的应用 利用全等三角形测距离 作三角形 一、三角形概念 1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示。
2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”。
3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示; 4、∠A、∠B、∠C为ΔABC的三个内角。 二、三角形中三边的关系
1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。 用字母可表示为a+b>c,a+c>b,b+c>a;a-b (1)当a+b>c,a+c>b,b+c>a同时成立时,能组成三角形; (2)当两条较短线段之和大于最长线段时,则可以组成三角形。 3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即 . 三、三角形中三角的关系 1、三角形内角和定理:三角形的三个内角的和等于1800。 2、三角形按内角的大小可分为三类: (1)锐角三角形,即三角形的三个内角都是锐角的三角形; (2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边。 注:直角三角形的性质:直角三角形的两个锐角互余。 (3)钝角三角形,即有一个内角是钝角的三角形。 3 、判定一个三角形的形状主要看三角形中最大角的度数。 4、直角三角形的面积等于两直角边乘积的一半。 5、任 意一个三角形都具备六个元素,即三条边和三个内角。都具有三边关系和三内角之和为1800的性质。 6、三角形内角和定理包含一个等式,它是我们列出有关角的方程的重要等量关系。 四、三角形的三条重要线段 1、三角形的三条重要线段是指三角形的角平分线、中线和高线。 2、三角形的角平分线: (1)三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫 做三角形的角平分线。 (2)任意三角形都有三条角平分线,并且它们相交于三角形内一点。 3、三角形的中线: (1)在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线。 (2)三角形有三条中线,它们相交于三角形内一点 。 4、三角形的高线: (1)从三角形的一个顶点向它的对边所在的直线做垂线,顶点和垂足之间的线段叫做三角形的高线,简称为三角形的高。 (2)任意三角形都有三条高线,它们所在的直线相交于一点。 区 别 相 同 中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角 三条角平分线交于三角表内部 高 线 垂直于对边(或其延长线) 锐角三角形:三条高线都在三角形内部 直角三角形:其中两条恰好是直角边 钝角三角形:其中两条在三角表外部 五、全等图形 1、两个能够重合的图形称为全等图形。 2、全等图形的性质:全等图形的形状和大小都相同。 3、全等图形的面积或周长均相等。 4、判断两个图形是否全等时,形状相同与大小相等两者缺一不可。 5、全等图形在平移、旋转、折叠过程中仍然全等。 6、全等图形中的对应角和对应线段都分别相等。 六、全等分割 1、把一个图形分割成两个或几个全等图形叫做把一个图形全等分割。 2、对一个图形全等分割: (1)首先要观察分析该图形,发现图形的构成特点; (2)其次要大胆尝试,敢于动手,必要时可采用计算、交流、讨论等方法完成。 七、全等三角形 1、能够重合的两个三角形是全等三角形,用符号“≌”连接,读作“全等于”。 2、用“≌”连接的两个全等三角形,表示对应顶点的字母写在对应的位置上。 3、全等三角形的性质:全等三角形的对应边、对应角相等。这是今后证明边、角相等的重要依据。 4、两个全等三角形,准确判定对应边、对应角,即找准对应顶点是关键。 八、全等三角形的判定 1、三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。 2、两角和它们的夹边对应相等的两个三角形全等,简写为“角边角”或“ASA”。 3、两角和其中一角的对边对应相等的两个三角形全等,简写为“角 角边”或“AAS”。 4、两边和它们的夹角对应相等的两个三角形全等,简写为“边角边”或“SAS”。 5、注意以下内容 (1)三角形全等的判定条件中必须是三个元素,并且一定有一组边对应相等。 (2)三边对应相等,两边及夹角对应相等,一边及任意两角对应相等,这样的两个三角形