POWELINK的原理
是一种基于普通以太网,却无须专业芯片,可以在各种平台(例如FPGA,ARM等)上实现的。高实时性的、开源的现场总线方案。
首先,POWELINK遵循IEC国际标准;通信描述IEC61784-2,服务和协议描述IEC61158-300、IEC61158-400、IEC61158-500、IEC61158-600设备描述ISO15745-1。
POWELINK是一个三层通信网络,它规定了物理层,数据链层,应用层。
物理层
物理层:描述数据传输的机械特性例如插件形状和尺寸,电气特性如最大传输功率的说明,功能特性人某种电平表示何种意义,规程特性人各信号线的工作的先后顺序。
POWELINK的物理层遵循IEE802.3快速以太网标准,这意味着只要有以太网的地方就可以实现POWEKINK,而以以太网技术的进步就会带来POWELINK的技术进步,目前支持10M/100M/1000M的以太网,只要在驱动程序做小小的改动就可以支持10G的以太网,用户可以购买普通的以太控制芯片来实现它的物理层,这是POWELINK的实现低成本的一个原因
数据链路层
这一层是POWELINK的核心,主要功能有构建数据帧、对数据帧定界、网络同步、数据帧收发顺序控制、实时通信的传输控制等。
POWELINK有两种通信机制:请求-应答模式、定时主动上报模式(PRC)
请求-应答模式
PRC模式
POWERLINK通信一共5种数据帧:SoC、Preq、Pres、SoA、AsyncData。一个完整的时钟周期包含同步和异步阶段,SoC到SoA是同步阶段,SoA到AsyncData是异步阶段。SoC是同步信号,每个循环周期的开始主站都会广播一个SoC信号,实现时钟同步和动作同步。SoA是异步信号,包含请求哪个从站上报数据,AsyncData包含从站上报的数据,但每个周期只能有一个从站上报异步数据。
POWERLINK的多路复用机制解决快速和慢速设备。
应用层
POWERLINK应用层遵循CANopen协议,为应用程序提供统一的接口,使不同设备与应用程序之间有统一的访问方式。CANopen协议有3个主要部分;PDO、SDO、OD。
PDO:过程数据对象,可以理解为需要周期性、实时传输的数据。
SDO:服务数据对象,可以理解为非周期传输、实时性要求不高的数据。 OD:对象字典
POWERLINK协议的接口,POWERLINK协议栈会根据配置信息将OD中对象值打包发送出去,同时将收到的信息存入到OD相应的对象中,这个过程是自动的。
常用领域
一个网络面对所有系统
PWERNLINK是一个实时工业以太网方案,设计为能够给客户一个独立的,一致的并且集成用以处理各种现代自动化中通信任务的方法。它适合所有可以想象的应用:机器制造和工厂工程,同时也可以在过程控制中应用。POWERLINK网络集成所有 工业自动化组件,如PLC,传感器,Z/6模块,运动控制,安全控制,安全传感器、执行机构以及HM1系统。
一个POWERLINK循环不仅能够提供有效实时载,并且可以在异步阶段传输异步数据,同时,一个固定时间用以传输多种用户数据,因此,那些用时间要求不高的数据也可以被传输,例如用于远程维护的服务数据,那些载网络环境里不属于立即要处理的设备,如用于节点监控和访问控制的视频。此外,相应的网关也允许非POWERLINK总线的非实时数据载一个异步循环里进行传输,也就是说,该协议可以集成不同的网络。
3 Ethernet POWERLINK原理
3.1 等时同步机制
等时同步POWERLINK的时间槽管理机制反应POWERLINK的整个控制机制(如右图所示)。在这个过程中,遵循IEEE1588分布式时钟系统标准,每个设备都将带上时钟以确保数据交换中的时钟同步,POWERLINK的循环周期由两个Master即管理节点MN和CN(Controlled Node)也称为从站Slave构成,在上电后,POWERLINK主站发布配置信息给每个从节点,然后发布SoC同步开始帧,每个从节点接收到SoC后开始进入数据通信等待状态,在SoC后,MN发送PReq1到第一个节点,Preq1收到后发送PRs1到网络上并以广播形式发布,然后MN 发送PReq2给第二个节点,然后第二个节点发送PRs2给网络,如此序列将到PRsN后结束,MN再发送SoA代表异步通信阶段开始,异步数据在这个SoA后开始发送到网络,整个过程称为一个POWERLINK循环帧,它由等时同步阶段和异步阶段构成,这些均可配置时间。
3.2 多路复用机制
多路复用为了提升网络效率,POWERLINK采用了多路复用机制来处理节点数较大的情况,通过网络配置,将系统设备划分为快速设备与慢速设备,对于快速设备可以在每个等时同步阶段进行数据刷新,而对于慢速设备可以每隔1~N个周期进行刷新。这样,即可缩短整个系统在每隔POWERLINK周期里的时间槽数,即使对于大量应用的节点也可以通过此种优化方式来提高整体的效率,因此,从这个角度来说,POWERLINK是非常具有灵活性和实用性的。 4.1 直接交叉通信
交叉通信意味着控制节点之间可以交换数据,而无需通过主站(Master)。
同标准以太网的设备一样,POWERLINK上的节点遵循Producer/Consumer机制,在网络上广播数据。通过检测数据帧地址,节点判断它们是否应该予以回应。如果给出一个适合的配置,控制节点也可以理解其它节点返回的命令。交叉通信的数据可以被控制器管理的节点同步。这种柔性是使得它领先其它的
Master/Slave概念,可以实现大型模块化机器设计的网络要求。在很多模块内部,或多或少存在节点间的单独通信,这是模块的一部分。每一个模块都有一个节点,负责调整模块内的通信,以及和其他模块的通信。然而,在系统里这些“模块主站”――PLCs或I/O设备,普遍只被看作控制节点。因此,这些模块基本上可以自行运行,而管理节点主要负责网络管理和模块间的同步。另外,用户可能已经感受到交叉通信的好处了,即使在不复杂的应用中。例如,在印刷机中,所有驱动器的旋转编码器都与一个主编码器同步,这是一个简单且有效的方法,无需分布式时钟或其他工具。
交叉通信的好处在于省时,系统简单,控制任务少,在很多场合,它允许使用更经济的控制器。它的好处在于:
l 中央和非中央控制设计(集中或分布式控制设计)
l 控制器-控制器通信
l 主轴直接给从轴设定值
l 编码器值的直接传递
l 直接事件传播
l 减少主站负载或者应用负载
l 多种模式,最小的数据负载
l 具有分散式安全设计能力
POWERLINK是100%兼容标准以太网的协议,这意味着通信协议完全是基于软件的,并且不使用任何私有的硬件,所有的应用可以使用标准硬件来实现。
MODBUS通讯协议
Modbus是由Modicon(现为施耐德电气公司的一个品牌)在1979年发明的,是全球第一个真正用于工业现场的总线协议。ModBus网络是一个工业通信系统,由带智能终端的可编程序控制器和计算机通过公用线路或局部专用线路连接而成。其系统结构既包括硬件、亦包括软件。它可应用于各种数据采集和过程监控。ModBus网络只有一个主机,所有通信都由他发出。网络可支持247个之多的远程从属控制器,但实际所支持的从机数要由所用通信设备决定。采用这个系统,各PC可以和中心主机交换信息而不影响各PC执行本身的控制任务。
Modbus具有以下几个特点:
(1)标准、开放,用户可以免费、放心地使用Modbus协议,不需要交纳许可证费,也不会侵犯知识产权。目前,支持Modbus的厂家超过400家,支持Modbus的产品超过600种。
(2)Modbus可以支持多种电气接口,如RS-232、RS-485等,还可以在各种介质上传送,如双绞线、光纤、无线等。
(3)Modbus的帧格式简单、紧凑,通俗易懂。用户使用容易,厂商开发简单。 在Modbus网络上传输
标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。控制器能直接或经由Modem组网。
控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。典型的主设备:主机和可编程仪表。典型的从设备:可编程控制器。
主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。
从设备回应消息也由Modbus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。 在其它类型网络上传输 在其它网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。提供的多个内部通道可允许同时发生的传输进程。
在消息位,Modbus协议仍提供了主—从原则,尽管网络通信方法是“对等”。如果一控制器发送一消息,它只是作为主设备,并期望从从设备得到回应。同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。
查询—回应周期
(1)查询
查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。例如功能代码03是要求从设备读保持寄存器并返回它们的内容。数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。错误检测域为从设备提供了一种验证消息内容是否正确的方法。
(2)回应
如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。数据段包括了从设备收集的数据:象寄存器值或状态。如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测域允许主设备确认消息内容是否可用。
两种传输方式
控制器能设置为两种传输模式(ASCII或RTU)中的任何一种在标准的Modbus网络通信。用户选择想要的模式,包括串口通信参数(波特率、校验方式等),在配置每个控制器的时候,在一个Modbus网络上的所有设备都必须选择相同的传输模式和串口参数。
所选的ASCII或RTU方式仅适用于标准的Modbus网络,它定义了在这些网络上连续传输的消息段的每一位,以及决定怎样将信息打包成消息域和如何解码。 在其它网络上(象MAP和Modbus Plus)Modbus消息被转成与串行传输无关的帧。
1.ASCII模式
当控制器设为在Modbus网络上以ASCII(美国标准信息交换代码)模式通信,在消息中的每个8Bit字节都作为一个ASCII码(两个十六进制字符)发送。这种方式的主要优点是字符发送的时间间隔可达到1秒而不产生错误。 代码系统
· 十六进制,ASCII字符0...9,A...F
· 消息中的每个ASCII字符都是一个十六进制字符组成