好文档 - 专业文书写作范文服务资料分享网站

小学数学奥数方法讲义40讲(二)

天下 分享 时间: 加入收藏 我要投稿 点赞

.\\

第十一讲 份数法

————————————————姚老师数学乐园

广安岳池 姚文国

把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。

(一)以份数法解和倍应用题

已知两个数的和及两个数的倍数关系,求这两个数的应用题叫做和倍应用题。

例1某林厂有杨树和槐树共320棵,其中杨树的棵数是槐树棵数的3倍。求杨树、槐树各有多少棵?(适于四年级程度)

解:把槐树的棵数看作1份数,则杨树的棵数就是3份数,320棵树就是(3+1)份数。

因此,得:

320÷(3+1)=80(棵)…………………槐树

80×3=240(棵)…………………杨树

答略。

例2 甲、乙两个煤场共存煤490吨,已知甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。甲、乙两个煤场各存煤多少吨?(适于四年级程度) 解:题中已经给出两个未知数之间的倍数关系:甲煤场存煤数量比乙煤场存煤数量的4倍少10吨。因此可将乙煤场的存煤数量看作1份数,甲煤场的存煤数量就相当于乙煤场存煤数量的4倍(份)数少10吨,两个煤场所存的煤490吨就是(1+4)份数少10吨,(490+10)吨就正好是(1+4)份数。

所以乙场存煤:

(490+10)÷(1+4)

=500÷5

.\\

=100(吨) 甲场存煤:

490-100=390(吨)

答略。

例3 妈妈给了李平10.80元钱,正好可买4瓶啤酒,3瓶香槟酒。李平错买成3瓶啤酒,4瓶香槟酒,剩下0.60元。求每瓶啤酒、香槟酒各是多少钱?(适于五年级程度)

解:因为李平用买一瓶啤酒的钱买了一瓶香槟酒,结果剩下0.60元,这说明每瓶啤酒比每瓶香槟酒贵0.60元。把每瓶香槟酒的价钱看作1份数,则4瓶啤酒、3瓶香槟酒的10.80元钱就是(4+3)份数多(0.60×4)元,(10.80-0.60×4)元就正好是(4+3)份数。

每瓶香槟酒的价钱是:

(10.80-0.60×4)÷(4+3)

=8.4÷7 =1.2(元)

每瓶啤酒的价钱是:

1.2+0.60=1.80(元)

答略。

(二)以份数法解差倍应用题

已知两个数的差及两个数的倍数关系,求这两个数的应用题叫做差倍应用题。

例1 三湾村原有的水田比旱田多230亩,今年把35亩旱田改为水田,这样今年水田的亩数正好是旱田的3倍。该村原有旱田多少亩?(适于五年级程度) 解:该村原有的水田比旱田多230亩(图11-1),今年把35亩旱田改为水田,则今年水田比旱田多出230+35×2= 300(亩)。根据今年水田的亩数正好是旱田的3倍,以今年旱田的亩数为1份数,则水田比旱田多出的300亩就正好是2份数(图11-2)。

.\\

今年旱田的亩数是:

(230+35×2)÷ 2

=300÷2 =150(亩)

原来旱田的亩数是:

150+35=185(亩)

综合算式:

(230+35×2)÷2+35

=300÷2+35 =150+35 =185(亩) 答略。

*例2 和平小学师生步行去春游。队伍走出10.5千米后,王东骑自行车去追赶,经过1.5小时追上。已知王东骑自行车的速度是师生步行速度的2.4倍。王东和师生每小时各行多少千米?(适于五年级程度)

解:根据“追及距离÷追及时间=速度差”,可求出王东骑自行车和师生步行的速度差是10.5÷1.5=7(千米/小时)。已知骑自行车的速度是步行速度的2.4倍,可把步行速度看作是1份数,骑自行车的速度就是2.4份数,比步行速度多2.4-1=1.4(份)。以速度差除以份数差,便可求出1份数。

10.5÷1.5÷(2.4-1)

.\\

=7÷1.4

=5(千米/小时)…………………………步行的速度

5×2.4=12(千米/小时)………………………………骑自行车的速度

答略。

(三)以份数法解变倍应用题

已知两个数量原来的倍数关系和两个数量变化后的倍数关系,求这两个数量的应用题叫做变倍应用题。

变倍应用题是小学数学应用题中的难点。解答这类题的关键是要找出倍数的变化及相应数量的变化,从而计算出“ 1”份(倍)数是多少。

*例1大、小两辆卡车同时载货从甲站出发,大卡车载货的重量是小卡车的3倍。两车行至乙站时,大卡车增加了1400千克货物,小卡车增加了1300千克货物,这时,大卡车的载货量变成小卡车的2倍。求两车出发时各载货物多少千克?(适于五年级程度)

解:出发时,大卡车载货量是小卡车的3倍;到乙站时,小卡车增加了1300千克货物,要保持大卡车的载货重量仍然是小卡车的3倍,大卡车就应增加1300×3千克。

把小卡车增加1300千克货物后的重量看作1份数,大卡车增加1300×3千克货物后的重量就是3份数。而大卡车增加了1400千克货物后的载货量是2份数,这说明3份数与2份数之间相差(1300×3-1400)千克,这是1份数,即小卡车增加1300千克货物后的载货量。

1300×3-1400

=3900-1400 =2500(千克)

出发时,小卡车的载货量是:

2500-1300=1200(千克)

出发时,大卡车的载货量是:

1200×3=3600(千克)

答略。

.\\

*例2甲、乙两个班组织体育活动,选出15名女生参加跳绳比赛,男生人数是剩下女生人数的2倍;又选出45名男生参加长跑比赛,最后剩下的女生人数是剩下男生人数的5倍。这两个班原有女生多少人?(适于五年级程度) 解:把最后剩下的男生人数看作1份数,根据“最后剩下的女生人数是男生人数的5倍”可知,剩下的女生人数为5份数。

根据45名男生未参加长跑比赛前“男生人数是剩下女生人数的2倍”,而最后剩下的女生人数是5份数,可以算出参加长跑前男生人数的份数:

5×2=10(份)

因为最后剩下的男生人数是1份数,所以参加长跑的45名男生是:

10-1=9(份)

每1份的人数是:

45÷9=5(人)

因为最后剩下的女生人数是5份数,所以最后剩下的女生人数是: 5×5=25(人) 原有女生的人数是:

25+15=40(人)

综合算式:

45÷(5×2-1)×5+15

=45÷9×5+15 =25+15 =40(人) 答略。

(四)以份数法解按比例分配的应用题

把一个数量按一定的比例分成几个部分数量的应用题,叫做按比例分配的应用题。

小学数学奥数方法讲义40讲(二)

.\\第十一讲份数法————————————————姚老师数学乐园广安岳池姚文国把应用题中的数量关系转化为份数关系,并确定某一个已知数或未知数为1份数,然后先求出这个1份数,再以1份数为基础,求出所要求的未知数的解题方法,叫做份数法。(一)以份数法解和倍应用题<
推荐度:
点击下载文档文档为doc格式
95dwg4qd6d9bpag891bi6tck19hq4z003fe
领取福利

微信扫码领取福利

微信扫码分享