16、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G。 (!)求证:BF=AC; (2)求证:CE=
1BF; 2 (3)CE与BC的大小关系如何?试证明你的结论。
17、如图,在四边形ABCD中,AB=BC,BF是∠ABC的平分线,AF∥DC,连接AC、CF,求证:CA是∠DCF的平分线。
DAFCB
18如图,在△ABC中,∠A=90°,D是AC上的一点,BD=DC,P是BC上的任一点,PE⊥BD,PF⊥AC,E、F为垂足.求证:PE+PF=AB.
19.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.
(1)如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,则经过 后,点P与点Q第一次在△ABC的 边上相遇?(在横线上直接写出答案,不必书写解题过程)
20已知:在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的左侧作等腰直角△ADE,解答下列各题:如果AB=AC,∠BAC=90°. (i)当点D在线段BC上时(与点B不重合),如图甲,线段BD,CE之间的位置关系为(ii)当点D在线段BC的延长线上时,如图乙,i)中的结论是否还成立?为什么?
21.如图14-1,在△ABC中,BC边在直线l上,AC⊥BC,且AC = BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.(1)在图14-1中,请你通过观察、测量,猜想并写出AB与AP所满足的数
量关系和位置关系;(2)将△EFP沿直线l向左平移到图14-2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP沿直线l向左平移到图14-3的位置时,EP的延长线交AC的延长线于点Q,连结AP,BQ.你认为(2)中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
A E A E A (E)
Q
l l C l B B F P F P B C P C (F)
图14-1 图14-2 Q 图14-3
22.如图1,A、E、F、C在同一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,试说明BD平分EF;若将△DEC的边EC沿AC方向移动变为图2时,其余条件不变,BD是否还平分EF,请说明理由。
23如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作
BD⊥BC交CF的延长线于D.
求证:(1)AE=CD; (2)若AC=12 cm,求BD的长.
24如图,两个全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三点在一条直线上,连接BD,取BD中点M,连接ME、MC,试判断△EMC的形状,并说明理由.
25已知BE,CF是△ABC的高,且BP=AC,CQ=AB,试确定AP与AQ的数量关系和位置关系
BCQFDPEA
26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取 CG=AB,连结AD、AG。 求证:(1)AD=AG,
AG (2)AD与AG的位置关系如何。
EF
DH
B
27已知:BD,CE是△ABC的高,点F在BD上,BF=AC,点G在CE的延长线上,CG=AB. 求证:AG⊥AF
CG E A D F C B
28、在等边?ABC的两边AB、AC所在直线上分别有两点M、N,D为ABC外一点,且
?MDN?60?,?BDC?120?,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数
量关系及?AMN的周长Q与等边?ABC的周长L的关系.
图1 图2 图3 (I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; Q此时? ;
L(II)如图2,点M、N边AB、AC上,且当DM?DN时,猜想(I)问的两个结论还成立吗?写出你
的猜想并加以证明;