2018年考研数学三真题及答案
一、 选择题
1.下列函数中,在x? 0处不可导的是()
A.f?x??xsinx B.f?x??xsinx C.f?x???cosx D.f?x??cosx 答案: ?D? 解析:方法一:
xsinxxf?x??f?0??lim?limsinx?0,可导 ?A?limx?0x?0x?0xxxxsinxxf?x??f?0??lim?limsin?B?limx?0x?0x?0xxxx?0,可导
12xcosx?1f?x??f?0?2?lim?lim?0,可导 ?C?limx?0x?0x?0xxx1?xcosx?1f?x??f?0??lim?lim2不存在,不可导 ?D?limx?0x?0x?0xxx?应选?D?. 方法二:
因为f(x)?cosx,f?0??1
1xcosx?1f?x??f?0?lim?lim?lim2不存在 x?0x?0x?0xxx??f?x?在x?0处不可导,选?D? 对?A?:f?x???xsinx在x? 0处可导 对?B?:f?x?~?xgx?x在x? 0处可导 对?C?:f(x)?cosx在x? 0处可导.
1 / 14
322.设函数f?x?在[0,1]上二阶可导,且?f?x?dx?0,则
01?A?当f'?x??0时,f??1???0 ?B?当f''?x??0时,?2?1???0 ?D?当f''?x??0时,2???1?f???0 ?2??1?f???0 ?2??C?当f'?x??0时,f??答案?D?
【解析】
1f?x?在处展开可得
将函数21?f''????1??1??1??f?x??f???f'???x???x???,22222????????2?10?f?x?dx???f0??1221?f''????1??1??1??1???1?11????f'???x????x???dx?f????0f''????x??dx,2?2?2??2??2??2???2?2??1?1??1?故当f''(x)?0时,?f?x?dx?f??.从而有f???0.0?2??2?
选?D?。
?3.设M??2???1?x?2?1?xdx,N??2?xdx,K??2?1?cosxdx,则 2??1?x2e22???A.M??N? .K B.M?K?N. C.K?M?N. D.K?N?M. 答案: ?C?
?解析:M??2???1?x?2?2x??dx??2??1?dx??2?1dx, ?22??1?x1?x?2?22?N??2???1?xx?1xdx?1 ,因为所以e?x?1xx?e2e?K??2?1?cosxdx,1?cosx?1.2??1?x?1?1?cosxxe即
所以由定积分的比较性质K?M? N,应选?C?.
2 / 14
4.设某产品的成本函数C?Q?可导,其中Q为产量,若产量为Q0时平均成本最小,则()
AC'?Q0??0 BC'?Q0??C?Q0?
C.C'?Q0??Q0C?Q0? D.Q0C'?Q0??C?Q0?
答案
D
C?Q?dC?Q?C'?Q?Q?C?Q?,由于C?Q?,?2在QdQQ【解析】平均成本C?Q??Q?Q0处取最小值,可知
Q0C'?Q0??0.故选(D).
?110??5.下列矩阵中,与矩阵?011??相似的为
?001????11?1??10?1?????A.?011? B.?011? ?001??001??????11?1??10?1?????C.?010? D.?010? ?001??001?????答案: ?A?
?1?10??110?????1解析:令P??则010P?010????
?001??001??????11?QP?1AP??01?00??120??1?????011??0?001??0???0??11??0??011????00?10??1??10??001????0?1??1?10????1??010??1????001?
10??11?01???选项为A
6.设A,B为n阶矩阵,记r?X?为矩阵X的秩,?XY?表示分块矩阵,则
3 / 14
Ar.?A?AB??r?A? B.r?ABA???r?A?
C.r?AB??? max?r?A?,r?B?? D.r?AB???r?AT BT? 答案:?A?
解析:易知选项C错
?11??00?对于选项B举反例:取A??B????1
?11??12??00??1100?则BA??,A,BA??????
331133????7. 设随机变量X的概率密度f?x?满足
f?1?x??f?1?x?,且?0f?x?dx?0.6,
则P?X?0??______.
(A) 0.2; (B) 0.3; (C) 0.4; (D) 0.6. 解 由f?1?x??f?1?x?知,概率密度f?x?关于x?1对称,故
2P?X?0??P?X?2?,
且P?X?0??P?0?X?2??P?X?2??1,由于P?0?X?2???f?x?dx?0.6,
02所以2P?X?0??0.4,即P?X?0??0.2,故选项A正确.
8. 设X1,X2,K,Xn为取自于总体X:N?,?2的简单随机样本,令
1nX??Xi,S1?ni?1????1n(Xi?X)2,S2??n?1i?11n(Xi?X)2, ?ni?1则下列选项正确的是______.
(A)
nX??S??:t?n?; (B) n?X???:t?n?1?;
SnX??(C)
?S*?:t?n?; (D) n?X???:t?n?1?.
S*4 / 14
解 由于?X??n~N0,1,(n?1)S?2??2?(Xi?1ni?X)2~?2(n?1),且X????2?n与
(n?1)S2?2相互独立,由t分布的定义,得
nX??S故选项B正确. 二、 填空题
???X??~t(n?1)Sn,
9.曲线y?x2?2lnx在其拐点处的切线方程为__。 答案y?4x?3
224【解析】函数f?x?的定义域为?0,???,y'?2x?,y''?2?2,y'''?3。
xxx令y''=0,解得x=1,而y'''?1??0,故点(1,1)为曲线唯一的拐点。 曲线在该点处切线的斜率y'?1??4,故切线方程为y?4x?3。 10.?exarcsin1?e2x?__.
答案exarcsin1?e2x?1?e2x?C【解析】令t=ex,则原式=?arcsin1?t2dt?tarcsin1?t2??t?tarcsin1?t2??t1?t211??1?t2???t1?t2dt
dt?tansin1?t2?1?t2?C?exarcsin1?e2x?1?e2x?C11.差分方程?2yx?yx?5的通解______. 【答案】
yx?c?2x?1?55 / 14