Low-Cost, +3V/+5V, 620μA, 200MHz,
Single-Supply Op Amps with Rail-to-Rail OutputsMAX4452/MAX4453/MAX4454/MAX4352/MAX4353/MAX4354ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCCto VEE)..................................................+6VDifferential Input Voltage ......................................................2.5VIN_-, IN_+, OUT_..............................(VCC+ 0.3V) to (VEE- 0.3V) Current into Input Pins (IN_+, IN_-)..................................±20mAOutput Short-Circuit Duration to VCC, VEE................ContinuousContinuous Power Dissipation (TA= +70°C)
5-Pin SC70 (derate 3.1mW/°C above +70°C).............247mW5 Pin SOT23 (derate 7.1mW/°C above +70°C)...........571mW8-Pin SOT23 (derate 8.9mW/°C above +70°C)...........741mW
8-Pin Thin SOT23 (derate 6.3mW/°C
above +70°C)..............................................................500mW8-Pin SO (derate 5.9mW/°C above +70°C).................471mW14-Pin TSSOP (derate 6.3mW/°C above +70°C)........500mW 14-Pin SO (derate 8mW/°C above +70°C)..................640mWOperating Temperature Range...........................-40°C to +85°CJunction Temperature......................................................+150°CStorage Temperature Range.............................-65°C to +150°CLead Temperature (soldering, 10s).................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functionaloperation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure toabsolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC= +5V, VCM= VCC/2 - 0.75V, VEE= 0, RL= ∞to VCC/2, VOUT= VCC/2, TA= TMINto TMAX, unless otherwise noted. Typical val-ues are at TA = +25°C.) (Note 1)PARAMETEROperating Supply VoltageRangeQuiescent Supply Current(Per Amplifier)Input Common-Mode VoltageRangeInput Offset VoltageInput Offset VoltageTemperature CoefficientInput Offset Voltage MatchingInput Bias CurrentInput Offset CurrentIBIOSDifferential mode,-0.04V ≤ (VIN+ - VIN) ≤ +0.04VCommon mode,VEE - 0.1V ≤ VCM ≤ VCC - 1.5VVEE - 0.1V ≤ VCM ≤ VCC - 1.5V+0.5V ≤ VOUT ≤ +4.5V,RL = 1k?RL = 20? connected toVCC or VEERL = 1k?SourcingSinkingVCC = +2.7V to +5.25V, VCM = 0,VOUT = 2V60SourcingSinkingVCC - VOHVOL - VEE6060SYMBOLVSISVCMVOSTCVOSMAX4453/MAX4454/MAX4353/MAX4354CONDITIONSGuaranteed by PSRR testVCC = + 5VVCC = +3VGuaranteed by CMRR testVEE - 0.10.47±10.80.112030100801522180751724704003503MIN2.7620530VCC - 1.512TYPMAX5.251200UNITSVμAVmVμV/°CmVμAμAk?M?dBdBmAmVmAdBInput ResistanceRINCommon-Mode Rejection RatioOpen-Loop GainOutput CurrentOutput Voltage SwingOutput Short-Circuit CurrentPower-Supply Rejection RatioCMRRAVOLIOUTVOUTISCPSRRLow-Cost, +3V/+5V, 620μA, 200MHz,
Single-Supply Op Amps with Rail-to-Rail Outputs
Detailed Description
The MAX4452/MAX4352 single, MAX4453/MAX4353dual, and MAX4454/MAX4354 quad, single-supply, rail-to-rail, voltage-feedback amplifiers achieve high slewrates and wide bandwidths while consuming only620μA per amplifier. Excellent speed/power ratiomakes them ideal for portable devices and high-fre-quency signal applications.
Internal feedback around the output stage ensures lowopen-loop output impedance, reducing gain sensitivityto load variations. This feedback also producesdemand-driven current bias to the output transistors.
Rail-to-Rail Outputs, Ground-Sensing Input
The input common-mode range extends from (V- 1.5V) with excellent common-modeEE-0.1V) to (Vrejection. Beyond this range, the amplifier output is aCCnonlinear function of the input, but does not undergophase reversal or latchup.
The output swings to within 180mV of either power-sup-ply rail with a 1k?load. The input ground-sensing andthe rail-to-rail output substantially increase the dynamicrange.
Output Capacitive Loading and Stability
The MAX4452/MAX4453/MAX4454/MAX4352/MAX4353/MAX4354 are optimized for AC performance. They arenot designed to drive highly reactive loads. Such loadsdecrease phase margin and may produce excessiveringing and oscillation. The use of an isolation resistoreliminates this problem (Figure 1). Figure 2is a graphof the Optimal Isolation Resistor (RLoad.
ISO) vs. CapacitiveApplications InformationChoosing Resistor Values
Unity-Gain Configuration
The MAX4452/MAX4453/MAX4454 are internally com-pensated for unity gain. When configured for unity gain,a 24?feedback resistor (Rresistor improves AC response by reducing the Q ofF) is recommended. Thisthe parallel LC circuit formed by the parasitic feedbackcapacitance and inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (Rresistor values that best fit the application. Large resis-F) and input (RG)tor values increase voltage noise and interact with theamplifier’s input and PC board capacitance. This cangenerate undesirable poles and zeros and decreasebandwidth or cause oscillations. For example, a nonin-verting gain-of-two configuration (RF= RG) using 1k?
resistors, combined with 2pF of amplifier input capaci-tance and 1pF of PC board capacitance, causes a poleat 106MHz. Since this pole is within the amplifier band-width, it jeopardizes stability. Reducing the 1k?resis-tors to 100?extends the pole frequency to 1.06GHz,but could limit output swing by adding 200?in parallelwith the amplifier’s load resistor.
Note: For high-gain applications where output offsetvoltage is a consideration, choose RS to be equal tothe parallel combination of RF and RG (Figures 3a and3b).3b):RRF×RGS=RF+RGRGRFRISOVOUTVINCLRBINFigure 1. Driving a Capacitive Load Through an IsolationResistor
ISOLATION RESISTANCEvs. CAPACITIVE LOAD3093co28t 4/3/252644XAM24)?22( OS20IR1816141210050100150CLOAD (pF)Figure 2. Optimal Isolation Resistor vs. Capacitive Load
MAX4452/MAX4453/MAX4454/MAX4352/MAX4353/MAX4354
MEMORY存储芯片MAX4543EUA-T中文规格书 - 图文



