距离过长造成线路供电能力受限的,应按照线路远期规划对CT设备进行更换,对架空线路长度进行调整。
2.2 10千伏电缆线路
2.2.1 对重、过载的电缆线路或存在“卡脖子”情况的,优先通过网络优化和负荷调整进行解决,无法调整的,可通过扩径改造或并接电缆的方式进行改造。
2.2.2 随着电网及负荷发展,现有电缆通道无法满足新建电缆线路需求的,应对原有通道扩建改造或另选路径新建。
2.3 配电变压器
2.3.1 对重、过载配电变压器,无法通过对现有配电台区供电范围进行合理分区和负荷调整的,应优先安排进行新增配变布点,根据负荷增长情况适时进行增容改造。
2.3.2 当低压用电负荷时段性或季节性差异较大,平均负荷率比较低时,可选用非晶合金配电变压器或有载调容变压器。用地紧张处,可采取小容量变压器单杆安装方式。
2.3.3 台区低压线路重、过载,造成线路供电能力受限,应对导线进行扩径更换或对负荷进行拆分。局部线段线径偏小,存在“卡脖子”情况,应按低压主干线建设标准进行改造。
2.3.4 老旧小区、小街小巷和农村等区域,台区低压线路采用单相供电方式的,如无法满足负荷要求,应进行“三相四线”制改造。
2.4 供电质量
2.4.1 中压线路供电距离过长、线路负载过大、导线截面偏小,导致线路末端电压偏低,可考虑新增变电站出线、调整线路长度、导线扩径改造、降低线路负载。
2.4.2 配变布点不足或远离负荷中心、导线截面偏小,导致台区末端电压偏低,优先考虑新增和优化配变布点、调整台区供电范围、导线扩径改造。
2.4.3 配变三相负荷不平衡,导致重载相电压偏低,应通过“三相四线”制改造,均匀分配台区单相负荷。
2.4.4 在10千伏线路功率因数低于0.9的超供电半径线路宜加装10千伏并联无功补偿装置,10千伏单辐射超供电半径配电线路(不含分布式电源),线路首末端电压降小于20%,可装设单向调压器;配变台区无功补偿装置容量配置不足,功率因数低于0.9,应按照配变容量的10-30%配置无功补偿装置或加装低压静止无功发生器(SVG)。
2.4.5 含分布式电源、负荷波动大、带联络的10千伏超供电半径配电线路,线路首末端电压降小于20%,可装设双向调压器,容量根据安装点前后用电负荷与电源容量确定。
2.4.6 大量分布式电源、大容量冲击性和波动性负荷接入配网系统,造成系统谐波超标,应装设电能质量监测装置,配置专用滤波装置等措施。
(三) 配网设备及设施健康水平 1. 建设改造目标 1.1 短路容量要求
配电网各级电压的短路容量应该从网络结构、电压等级、变压器容量、阻抗选择和运行方式等方面进行控制,使各级电压断路器的开断电流与相关设备的动、热稳定电流相配合,变电站内母线的短路水平一般不应超过表10中的数值。选择配电线路开关设备的短路容量一般应留有一定裕度,对变电站近区安装的环网柜、柱上开关、跌落式熔断器,应根据现场状况进行短路容量校核,开关设备额定容量选择。如表11。
表10 变电站内母线的短路水平
母线电压等级 (kV) 10-20 A+、A、B类供电区域 20 短路电流(kA) C类供电区域 16、20 D、E类供电区域 16、20 注1:220kV变电站10kV侧无馈线出线时不宜超过25kA,有10kV出线时不宜超过20kA; 注2:110(66)kV变电站的10kV母线的短路水平不宜超过20(16)kA。 表11 开关设备额定容量选择表
设备名称 开关站断路器 环网柜负荷开关 环网柜断路器 柱上断路器/重合器 柱上负荷开关/分段器 跌落式熔断器 柱上隔离开关 额定电流 A 630、1250(特殊情况) 630 630 630 630 - 630 额定短路 开断电流 kA 20、25 - 20 20 - 8、12.5 - 额定短时耐受电流(kA)/额定短路持续时间(s) 20、25/4 20/4 20/4 20/4 20/4 - 20/4 1.2 中性点接地方式
10(20)kV配电网中性点可根据需要采取不接地、经消弧线圈接地或经低电阻接地;220V/380V配电网中性点采取直接接地方式。各类供电区域10(20)kV配电网中性点接地方式宜符合表12的要求。
表12 供电区域适用的接地方式
供电区域 A+ A B C D E 中性点接地方式 低电阻接地 √ √ √ 消弧线圈接地 — √ √ √ √ 不接地 — — — √ √ √ — — — — 中性点不接地和消弧线圈接地系统,中压线路发生永久性单相接地故障后,宜按快速就近隔离故障原则进行处理,宜选用消弧线圈并联电阻、中性点经低励磁阻抗变压器接地保护、稳态零序方向判别、暂态零序信号判别等有效的单相接地故障判别技术。配电线路开关宜配置相应的电压、电流互感器(传感器)和终端,与变电站内的消弧、选线设备相配合,实现就近快速判断和隔离永久性单相接地故障功能。
1.3 具备良好的接地、防雷措施 1.3.1 中压配电设备防雷
中压配电设备防雷保护应选用无间隙氧化锌避雷器,避雷器的标称放电电流一般应按照5kA执行。对于中雷区及以上山区、河流湖叉等故障不易查找的区域,避雷器的标称放电电流可提高等级。
1.3.2 中压架空线路防雷
中压架空绝缘线路应采取带间隙避雷器或放电箝位绝缘子等措施防止雷击断线,对于可靠性要求高的中压架空绝缘线路或变电站馈出线路1km或2km范围内宜逐杆装设带间隙避雷器。多雷区及以上的空旷区域的中压架空线路可执行GB 50061的规定,架设架空地线保护,中雷区空旷区域变电站出站1km或2km范围中压架空线路及易遭受雷击的
线路段宜架设架空地线保护;当线路为绝缘导线或带有重要负荷时,宜同时采取架空地线和带间隙避雷器的保护措施。中雷区及以上区域,中压架空线路裸导线跨越高等级公路、河流等大档距处应采用带间隙避雷器保护,带有重要负荷或供电连续性要求较高负荷的架空裸导线线路宜采用带间隙避雷器保护。
1.3.3 防雷接地措施
新建或改造架空绝缘线路导线的防雷保护应利用环形混凝土电杆的钢筋自然接地,其接地电阻不宜大于30Ω,如无法满足可采取多基电杆接地线相连的方式。横担与接地引下端应有可靠电气连接,符合GB 50061的规定,避免混凝土被雷电击碎,造成钢筋锈蚀。高土壤电阻率地区可采用增设接地电极降低接地电阻或换土填充等物理性降阻方式,不得使用化学类降阻剂。
1.4 有效抵御外部环境影响
配电网设备设施建设与改造应与区域规划相符,尽量一次建改到位。架空线路应与周边建筑、林木、铁路、道路、河道、其他线路等保持安全距离,路径选择应避开乔木、竹类等高大植物和易发生地质灾害的区域,在环境条件恶劣及灾害多发的区域,应采取差异化设计落实线路防外破、防覆冰、防风、防鸟害等措施;电缆线路应优先选用电缆隧道、排管敷设方式,避免直埋敷设,与热力、煤气等其他管线保持安全距离;站房、户外设备应设置在交通运输方便,便于进出线场合,不应设在地势低洼和可能积水的场所,土建设