第八章 相关与回归分析
一、单选题
1.相关关系的种类按其涉及变量多少可分为( )。
A.正相关和负相关 B.单相关和复相关
C.线性相关和非线性相关 D.不相关、不完全相关、完全相关 2.相关分析是研究( )。
A.变量之间的数量关系 B.变量之间的变动关系 C.变量之间的相互关系的密切程度 D.变量之间的因果关系 3.下列关系中,属于正相关关系的是( )。
A.在合理限度内,施肥量与农作物平均亩产之间的关系 B.产品产量与单位产品成本之间的关系 C.商品的流通费用与销售利润之间的关系 D.流通费用率与商品销售量之间的关系 4.相关系数的取值范围是( )。
A.0<r<1 B.-1<r<1 C.≤1 D.0<r≤1 5.如果变量x和变量y之间相关系数为负1,说明这两个变量之间( )。 A.不存在相关关系 B.相关程度很低 C.相关程度很高 D.完全负相关 6.单位产品成本与其产量的相关;单位产品成本与单位产品原材料消耗量的相关( )。
A.前者是正相关,后者是负相关 B.前者是负相关,后者是正相关 C.两者都是正相关 D.两者都是负相关 7.下列现象的相关密切程度最高的是( )。
A.某商店的职工人数与商品销售额之间的相关系数0.87 B.流通费用水平与利润率之间的相关关系为-0.94 C.商品销售额与利润率之间的相关系数为0.51 D.商品销售额与流通费用水平的相关系数为-0.81 8.简单回归方程中的两个变量( )。
A.两变量都是随机变量 B.两变量都是给定的变量 C.给定自变量,因变量随机 D.给定因变量,自变量随机
9.当所有的观察值都落在回归直线yc?a?bx上,则x与y之间的相关系数( )。 A.r?1 B.r?1 C.r??1 D.r?1
r
10.在回归直线yc?a?bx上,则b表示( )。 A.当x增加一个单位时,y增加a的数量 B.当y增加一个单位时,x增加b的数量 C.当x增加一个单位时,y的平均增加量 D.当y增加一个单位时,x的平均增加量
11.相关分析和回归分析相辅相成,又各有特点,下面正确的描述有( )。 A.在相关分析中,相关的两变量都不是随机的 B.在回归分析中,自变量是随机的,因变量不是随机的 C.在回归分析中,因变量和自变量都是随机的 D.在相关分析中,相关的两变量都是随机的
12.回归系数和相关系数的符号是一致的,其符号均可用来判断现象是( )。 A.正相关还是负相关 B.线性相关还是非线性相关 C.单相关还是复相关 D.完全相关还是不完全相关
二、简答题
1.简述什么是相关关系,相关关系的种类。
2.简述相关分析与回归分析之间的区别与联系。
?的经济意义是什么? ????X中,????3.在回归方程中Y101
三、计算题
1. 某保险公司业务员发现居民火灾损失额同居民与消防队的距离似乎有关。他随机抽取了8起最近发生火灾居民的损失(y,万元)及其火灾地点与最近的
消防队的距离(x,公里)的资料,经计算得知:?x?34.4,?y?249.7,
22,x?158.88y???8158.69,?xy?1134.02,计算:
(1)这两者的关系密切程度多大?
(2)火灾发生地点与最近消防队之间的距离每增加1公里,居民火灾损失额如何变化?
2.某企业2014年至2018年产品成本和利润资料如下:
单位成本 年度 (元)X 2014 2015 2016 2017 2018 8 7 6 8 9 (万元)Y 15 18 20 16 14 利润 (1)计算相关系数,并判断相关的密切程度和方向; (2)建立回归方程,并解释方程中参数的经济含义; (3)当单位成本为10元时,利润将如何变化?
3. 根据调查吉林省某地区的10户家庭每周的收入(元)和食品支出(元/周)情况,数据资料如下:
收入 家庭 (元) 1 2 3 4 5 6 7 8 9 10 20 30 33 40 15 13 26 38 25 43 支出 (元/周) 7 9 8 11 5 4 8 10 9 10 (1)计算相关系数,并判断相关的密切程度和方向 (2)建立回归方程,并解释方程中参数的经济含义
(3)若某家庭每周收入为23元时,食品支出情况将如何变化?
4. 假设某国的货币供给量(Y)与国民收入(X)的历史数据如下表所示:
年份 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 货币供给量 2.0 2.5 3.2 3.6 3.3 4.0 4.2 4.6 4.8 5.0 国民收入 5.0 5.5 6.0 7.0 7.2 7.7 8.4 9.0 9.7 10.0 (1)建立回归方程,并解释回归系数的含义。
(2)如果希望2019年国民收入达到11.2,那么应该把货币供给量定在什么水平上?