好文档 - 专业文书写作范文服务资料分享网站

作业22不定积分的分部积分法

天下 分享 时间: 加入收藏 我要投稿 点赞

1、求下列不定积分 1)

?xsin2xdx;

x?1?cos2x??xxcos2x?dx???dx ???222??解:原式?x2xsin2xsin2xx2xsin2xcos2x???dx????C ?4444482)

??1?ln?1??dx; ?x???1?x11?x??dx?dx?lnx?1?C ??2?x?x?1xx?1解:原式?xln?1?3)

?arctanxdx;

解:原式?xarctanx?x?1?1?2x?1?x?dx

1?11 ?xarctanx??x2dx??dx

22x?1?x?1?3 ?xarctanx?x2?arctanx?C

44)

?xtan2xdx;

2x2?xtanx??tanxdx 解:原式??x?secx?1?dx??2x2?xtanx?lncosx?C ??25)

?arcsinxdx; 2x?解:令x?sint原式???2?t??2

arcsinx1arcsinx1??dx????dt

2xxsintx1?xarcsinxarcsinx11?x2?lncsct?cott?C???ln??C ??xxxx6)

?x3e?xdx;

2x2?x2x2?x21?x2?x2e??xedx??e?e?C 解: 原式??2227)

?sinxlntanxdx;

sec2xdx??cosxlntanx??cscxdx 解:原式??cosxlntanx??cosxtanx ??cosxlntanx?lncscx?cotx?C 8)

?xarctanx1?x2dx;

11?x2解:原式?1?xarctanx?2?dx

?1?x2arctanx?lnx?1?x2?C

??9)

?xexe?1xdx;

?ex1?e?1dx?2xe?1?2????dx xxe?1??e?1xxx2x?2解:原式?2xe?1?2

x??2xe?1?4e?1?2?xx?e??1??e????2dx?2xe?1?4e?1?2arcsinexx?x2?C

10)xlnx?1?x2dx;

???解:方法一、令x?tant

x2x22原式?lnx?1?x??dx

2221?x??x2tan2t2lnx?1?x???sec2tdt ?22sect??x21lnx?1?x2??tan2t?sectdt ?22?? 因为tan2t?sectdt?tantsect?sec3tdt?tantsect?????sect?tan2tsect?dt

?tantsect?lnsect?tant??tan2tsectdt

112tantsectdt?tantsect?lnsect?tant?C ?22x211原式?lnx?1?x2?tantsect?lnsect?tant?C

244x211 ?lnx?1?x2?x1?x2?lnx?1?x2?C

244方法二、

???? 设u?x??lnx?1?x?2?x21,v??x??x,则v?x???

24?x21??x21?12dx 原式????lnx?1?x?????22424????1?x???x21?12x2?12dx ????lnx?1?x??22441?x?????x21?1?x222 ????lnx?1?x???1?x?4?1?x2?24?????dx ??x21?1 ????lnx?1?x2?x1?x2?C

4?24???2、已知f(x)的一个原函数是

sinx,求?xf?(x)dx; x解:

?sinx??sinx?xf?(x)dx?xf?x???f?x?dx?x??C ??xx?? ?xcosx?2sinx?C

xx3、设f?(e)?1?x,求f(x).

解:令t?e,则x?lnt,f??t??1?lnt,f?t??x?f??t?dt???1?lnt?dt?tlnt?C

所以f?x??xlnx?C

作业22不定积分的分部积分法

1、求下列不定积分1)?xsin2xdx;x?1?cos2x??xxcos2x?dx???dx???222??解:原式?x2xsin2xsin2xx2xsin2xcos2x???dx????C?4444482)??1?ln?1??dx;?x???1?x11?x??dx?dx?lnx?1?C??2?x?x
推荐度:
点击下载文档文档为doc格式
93w1g0ytoz4n25q6ny0j2r4yi9c8on003u4
领取福利

微信扫码领取福利

微信扫码分享