同理在线段AB,AD,CD上都存在两个点使PE+PF=9. 即共有8个点P满足PE+PF=9, 故选:D.
【点评】本题考查了正方形的性质,最短路径问题,在BC上找到点N使点N到点E和点F的距离之和最小是本题的关键.
二、填空题(共4小题,每小题5分,满分20分) 11.(5分)计算
÷
的结果是 3 .
化简,再根据二次根式的性质计算即可. .
【分析】根据二次根式的性质把【解答】解:故答案为:3
【点评】本题主要考查了二次根式的乘除法运算,熟练掌握二次根式的性质是解答本题的关键. 12.(5分)命题“如果a+b=0,那么a,b互为相反数”的逆命题为 如果a,b互为相反数,那么a+b=0 .
【分析】根据互逆命题的定义写出逆命题即可.
【解答】解:命题“如果a+b=0,那么a,b互为相反数”的逆命题为: 如果a,b互为相反数,那么a+b=0;
故答案为:如果a,b互为相反数,那么a+b=0.
【点评】本题考查的是命题与定理、互逆命题,掌握逆命题的确定方法是解题的关键. 13.(5分)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为 .
【分析】连接CO并延长交⊙O于E,连接BE,于是得到∠E=∠A=30°,∠EBC=90°,解直角三角形即可得到结论.
【解答】解:连接CO并延长交⊙O于E,连接BE, 则∠E=∠A=30°,∠EBC=90°, ∵⊙O的半径为2, ∴CE=4, ∴BC=CE=2,
∵CD⊥AB,∠CBA=45°, ∴CD=
BC=
,
故答案为:.
【点评】本题考查了三角形的外接圆与外心,圆周角定理,等腰直角三角形的性质,正确的作出辅助线是解题的关键.
14.(5分)在平面直角坐标系中,垂直于x轴的直线l分别与函数y=x﹣a+1和y=x2﹣2ax的图象相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是 a>1或a<﹣1 .
【分析】由y=x﹣a+1与x轴的交点为(a﹣1,0),可知当P,Q都在x轴的下方时,直线l与x轴的交点要在(a﹣1,0)的左侧,即可求解; 【解答】解:y=x﹣a+1与x轴的交点为(a﹣1,0), ∵平移直线l,可以使P,Q都在x轴的下方, ∴当x=a﹣1时,y=(1﹣a)2﹣2a(a﹣1)<0, ∴a2﹣1>0, ∴a>1或a<﹣1; 故答案为a>1或a<﹣1;
【点评】本题考查二次函数图象及性质,一次函数图象及性质;数形结合的分析问题,将问题转化为当x=1﹣a时,二次函数y<0是解题的关键. 三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解方程:(x﹣1)2=4.
【分析】利用直接开平方法,方程两边直接开平方即可. 【解答】解:两边直接开平方得:x﹣1=±2, ∴x﹣1=2或x﹣1=﹣2, 解得:x1=3,x2=﹣1.
【点评】此题主要考查了直接开平方法,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.
(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
16.(8分)如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.
(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD. (2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)
【分析】(1)直接利用平移的性质得出C,D点位置,进而得出答案; (2)直接利用菱形的判定方法进而得出答案. 【解答】解:(1)如图所示:线段CD即为所求;
(2)如图:菱形CDEF即为所求,答案不唯一.
【点评】此题主要考查了菱形的判定以及平移变换,正确掌握菱形的判定方法是解题关键. 四、(本大题共2小题,每小题8分,满分16分)
17.(8分)为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?
【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米.根据“甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米”列出方程,然后
求工作时间.
【解答】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x﹣2)米, 由题意,得2x+(x+x﹣2)=26, 解得x=7,
所以乙工程队每天掘进5米,
(天)
答:甲乙两个工程队还需联合工作10天.
【点评】此题主要考查了一元一次方程的应用,根据题意得出两队的工效,进而得出等量关系是解题关键.
18.(8分)观察以下等式: 第1个等式:=+, 第2个等式:=+, 第3个等式:=+第4个等式:=+第5个等式:=+……
按照以上规律,解决下列问题: (1)写出第6个等式: (2)写出你猜想的第n个等式: 【分析】(1)根据已知等式即可得; (2)根据已知等式得出规律【解答】解:(1)第6个等式为:故答案为: (2)
证明:∵右边=∴等式成立,
=左边.
;
,
,再利用分式的混合运算法则验证即可.
;
(用含n的等式表示),并证明.
, , ,
故答案为:.
【点评】本题主要考查数字的变化规律,解题的关键是根据已知等式得出的规律,并熟练加以运用.
五、(本大题共2小题,每小题10分,满分20分)
19.(10分)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离. (参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
【分析】连接CO并延长,与AB交于点D,由CD与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,利用锐角三角函数定义求出OA,进而求出OD,由CO+OD求出CD的长即可.
【解答】解:连接CO并延长,与AB交于点D, ∵CD⊥AB,∴AD=BD=AB=3(米), 在Rt△AOD中,∠OAB=41.3°, ∴cos41.3°=tan41.3°=
,即OA=
=
=4(米),
,即OD=AD?tan41.3°=3×0.88=2.64(米),
则CD=CO+OD=4+2.64=6.64(米).