大数据中用户所需信息资源检测仿真
张朋
【期刊名称】《计算机仿真》 【年(卷),期】2017(034)011
【摘要】The aim of this article is to overcome defect of traditional method of information resource detection required by users in large data,such as low detection precision.Based on genetic optimization,a new
method
of
the
information
resource
detection
was
presented.Firstly,integrated with theory of genetic optimization,mean value of information and covariance matrix required by users was estimated and log-likelihood function of the required information was used as objective function.Then,corresponding constraint condition of parameter was obtained via existing missing data sample and estimation
model
of
missing
data
in
large
data
was
built.Moreover,dimensional influence of the information required by users was eliminated and distance of data feature was worked out.Clustering analysis was used to allocate weight of missing data attribute feature.Finally,the information resource detection was completed.Experimental results show that the method has higher padding precision and better expandability.%通过对数据缺失特征进行检测实现信息资源的有效检测,能够保证大数据中用户所需信息的完整性和准确性,对用户所需信息资源的检测,需要计算出数据特征距离,分析分配缺失数据属性特
征权重,完成信息资源的检测.传统方法定义约束容差集合差异度,计算出不完备数据特征集合内全部对象的总体相异程度,但忽略了分析分配缺失数据属性特征权重,导致检测精度偏低.提出基于遗传优化的大数据中用户所需信息资源检测方法.结合遗传优化思想估计用户所需信息均值和协方差矩阵,以用户所需信息的对数似然函数作为目标函数,通过已有缺失数据样本获得参数的相应约束条件,建立大数据巾缺失数据估计模型,消除用户所需信息量纲的影响,计算出数据特征的距离,利用聚类分析分配缺失数据属性特征权重,完成大数据巾用户所需信息资源检测.实验结果表明,所提方法具有较高的填补准确性,且可扩展性较强. 【总页数】4页(422-425)
【关键词】大数据;用户所需信息;资源检测 【作者】张朋
【作者单位】江西应用科技学院信息工程学院,江西南昌330100 【正文语种】中文 【中图分类】TP391 【文献来源】
https://www.zhangqiaokeyan.com/academic-journal-cn_computer-simulation_thesis/0201240665841.html 【相关文献】
1.大数据中用户特征信息优化定位检测仿真 [J], 黄欣欣
2.关于大数据中用户资源信息提取仿真研究 [J], 郭嘉; 郭晓峰; 沈建京 3.关于大数据中用户信息安全保护优化仿真 [J], 张成军; 刘超; 郭强 4.大数据中用户通信信息准确定位仿真 [J], 刘云萍; 刘晋钢
5.大数据资源中用户需求信息定向提取仿真 [J], 程月
以上内容为文献基本信息,获取文献全文请下载