好文档 - 专业文书写作范文服务资料分享网站

2018年郴州市中考数学试卷及答案解析

天下 分享 时间: 加入收藏 我要投稿 点赞

四边形.

∵抛物线的表达式为y=﹣x2+2x+3,

∴点C的坐标为(0,3),点P的坐标为(2,3), ∴点M的坐标为(1,6); 当t≠2时,不存在,理由如下:

若四边形CDPM是平行四边形,则CE=PE, ∵点C的横坐标为0,点E的横坐标为0, ∴点P的横坐标t=1×2﹣0=2. 又∵t≠2, ∴不存在.

(3)①在图2中,过点P作PF∥y轴,交BC于点F. 设直线BC的解析式为y=mx+n(m≠0), 将B(3,0)、C(0,3)代入y=mx+n,

,解得:

来源学+科+网∴直线BC的解析式为y=﹣x+3.

∵点P的坐标为(t,﹣t2+2t+3), ∴点F的坐标为(t,﹣t+3), ∴PF=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t, ∴S=PF?OB=﹣t2+t=﹣(t﹣)2+②∵﹣<0,

∴当t=时,S取最大值,最大值为

∵点B的坐标为(3,0),点C的坐标为(0,3), ∴线段BC=

=3

∴P点到直线BC的距离的最大值为=,此时点P的坐标为(,).

【点评】本题考查了待定系数法求一次(二次)函数解析式、平行四边形的判定与性质、三角形的面积、一次(二次)函数图象上点的坐标特征以及二次函数的性质,解题的关键是:(1)由点的坐标,利用待定系数法求出抛物线表达式;(2)分t=2和t≠2两种情况考虑;(3)①利用三角形的面积公式找出S关于t的函数表达式;②利用二次函数的性质结合面积法求出P点到直线BC的距离的最大值.

26.(12.00分)在矩形ABCD中,AD>AB,点P是CD边上的任意一点(不含C,D两端点),过点P作PF∥BC,交对角线BD于点F.

(1)如图1,将△PDF沿对角线BD翻折得到△QDF,QF交AD于点E. 求证:△DEF是等腰三角形;

(2)如图2,将△PDF绕点D逆时针方向旋转得到△P'DF',连接P'C,F'B.设旋转角为α(0°<α<180°).

①若0°<α<∠BDC,即DF'在∠BDC的内部时,求证:△DP'C∽△DF'B.

来源学科网ZXXK]

②如图3,若点P是CD的中点,△DF'B能否为直角三角形?如果能,试求出此时tan∠DBF'的值,如果不能,请说明理由.

【分析】(1)根据翻折的性质以及平行线的性质可知∠DFQ=∠ADF,所以△DEF是等腰三角形;

(2)①由于PF∥BC,所以△DPF∽△DCB,从而易证△DP′F′∽△DCB;

②由于△DF'B是直角三角形,但不知道哪个的角是直角,故需要对该三角形的内角进行分类讨论.

【解答】解:(1)由翻折可知:∠DFP=∠DFQ, ∵PF∥BC, ∴∠DFP=∠ADF, ∴∠DFQ=∠ADF, ∴△DEF是等腰三角形,

(2)①若0°<α<∠BDC,即DF'在∠BDC的内部时, ∵∠P′DF′=∠PDF,

∴∠P′DF′﹣∠F′DC=∠PDF﹣∠F′DC, ∴∠P′DC=∠F′DB, 由旋转的性质可知: △DP′F′≌△DPF, ∵PF∥BC, ∴△DPF∽△DCB, ∴△DP′F′∽△DCB ∴

∴△DP'C∽△DF'B

②当∠F′DB=90°时,如图所示,

∵DF′=DF=BD, ∴

=,

=,

∴tan∠DBF′=当∠DBF′=90°, 此时DF′是斜边,

即DF′>DB,不符合题意, 当∠DF′B=90°时,如图所示, ∵DF′=DF=BD, ∴∠DBF′=30°, ∴tan∠DBF′=

【点评】本题考查相似三角形的性质与判定,涉及旋转的性质,锐角三角函数的定义,相似三角形的性质以及判定等知识,综合程度较高,需要学生灵活运用知

识.

2018年郴州市中考数学试卷及答案解析

四边形.∵抛物线的表达式为y=﹣x2+2x+3,∴点C的坐标为(0,3),点P的坐标为(2,3),∴点M的坐标为(1,6);当t≠2时,不存在,理由如下:若四边形CDPM是平行四边形,则CE=PE,∵点C的横坐标为0,点E的横坐标为0,∴点P的横坐标t=1×2﹣0=2.又∵t≠2,∴不存在.(3)①在图2中,过点P作
推荐度:
点击下载文档文档为doc格式
93mba2oyf47f1wl0k4bu3bj0w6iip0013o4
领取福利

微信扫码领取福利

微信扫码分享