文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
第一章 行列式
1? 利用对角线法则计算下列三阶行列式? 201 (1)1?4?1?
?183201 解 1?4?1
?183 ?2?(?4)?3?0?(?1)?(?1)?1?1?8 ?0?1?3?2?(?1)?8?1?(?4)?(?1) ??24?8?16?4??4? abc (2)bca?
cababc 解 bca
cab ?acb?bac?cba?bbb?aaa?ccc ?3abc?a3?b3?c3? 111 (3)abc?
a2b2c2111 解 abc
a2b2c2 ?bc2?ca2?ab2?ac2?ba2?cb2 ?(a?b)(b?c)(c?a)?
xyx?y (4)yx?yx?
x?yxy文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
xyx?y 解 yx?yx
x?yxy ?x(x?y)y?yx(x?y)?(x?y)yx?y3?(x?y)3?x3 ?3xy(x?y)?y3?3x2 y?x3?y3?x3 ??2(x3?y3)?
2? 按自然数从小到大为标准次序? 求下列各排列的逆序数?
(1)1 2 3 4? 解 逆序数为0 (2)4 1 3 2?
解 逆序数为4? 41? 43? 42? 32? (3)3 4 2 1?
解 逆序数为5? 3 2? 3 1? 4 2? 4 1, 2 1? (4)2 4 1 3?
解 逆序数为3? 2 1? 4 1? 4 3? (5)1 3 ? ? ? (2n?1) 2 4 ? ? ? (2n)?
n(n?1) 解 逆序数为?
2 3 2 (1个) 5 2? 5 4(2个) 7 2? 7 4? 7 6(3个) ? ? ? ? ? ?
(2n?1)2? (2n?1)4? (2n?1)6? ? ? ?? (2n?1)(2n?2) (n?1个)
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
(6)1 3 ? ? ? (2n?1) (2n) (2n?2) ? ? ? 2? 解 逆序数为n(n?1) ? 3 2(1个) 5 2? 5 4 (2个) ? ? ? ? ? ?
(2n?1)2? (2n?1)4? (2n?1)6? ? ? ?? (2n?1)(2n?2) (n?1个) 4 2(1个) 6 2? 6 4(2个) ? ? ? ? ? ?
(2n)2? (2n)4? (2n)6? ? ? ?? (2n)(2n?2) (n?1个) 3? 写出四阶行列式中含有因子a11a23的项? 解 含因子a11a23的项的一般形式为
(?1)ta11a23a3ra4s?
其中rs是2和4构成的排列? 这种排列共有两个? 即24和42? 所以含因子a11a23的项分别是
(?1)ta11a23a32a44?(?1)1a11a23a32a44??a11a23a32a44? (?1)ta11a23a34a42?(?1)2a11a23a34a42?a11a23a34a42? 4? 计算下列各行列式?
41 (1)1001251202142? 07文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
41 解 100125120214c2?c342??????10c?7c103074?12302021?104?1?102?122?(?1)4?3 ?14103?1404?110c2?c39910 ?12?2??????00?2?0?
10314c1?12c317171423 (2)151?120423611? 2242361c4?c221?????321251?120423023 解 151?1201?12042360r4?r222?????310221?121423402 00r4?r123 ?????1002?0? 00?abacae (3)bd?cdde?
bfcf?ef?abacae?bce 解 bd?cdde?adfb?ce
bfcf?efbc?e?111 ?adfbce1?11?4abcdef?
11?1a1 (4)?001b?1001c?100? 1d文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.
a1 解 ?001b?1001c?10r1?ar201?ab0??????1b10?1d00a1c?100 1d
5? 证明:
abad?abcd?ab?cd?ad?1? ?(?1)(?1)3?21??11?cda2abb2 (1)2aa?b2b?(a?b)3;
111 证明
222ab?ab?aab?a?(a?b)3 ? ?(b?a)(b?a)1 ?(?1)2b?a2b?2a3?1ax?byay?bzaz?bxxyz (2)ay?bzaz?bxax?by?(a3?b3)yzx;
az?bxax?byay?bzzxy 证明
xyz ?(a3?b3)yzx?
zxya2b2 (3)2cd2(a?1)2(b?1)2(c?1)2(d?1)2(a?2)2(b?2)2(c?2)2(d?2)2(a?3)2(b?3)2?0; (c?3)2(d?3)2 证明 a2b2 2cd2(a?1)2(b?1)2(c?1)2(d?1)2(a?2)2(b?2)2(c?2)2(d?2)2(a?3)2(b?3)2(c4?c3? c3?c2? c2?c1得) (c?3)2(d?3)2