(a+1)⊕b = n+2, a⊕(b+1)= n-3 现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】
?1?1.计算???的结果是( )
?2?A.
32.?2的倒数是( ) A.?1 6B.?111 C. D.?
868B.
1 2
1 2
C.2
D.?2
3.下列各式中,正确的是( )
A.2?15?3 B.3?15?4 C.4?15?5 D.14?15?16 4.已知实数a在数轴上的位置如图所示,则化简|1?a|?a2的结果为( ) A.1 B.?1 C.1?2a
5.?2的相反数是( ) A.2
B.?2
C.
D.2a?1
?1 a 0 1 第4题图
1 2D.?1 226.-5的相反数是____,-
1的绝对值是____,2??4?=_____.
7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果 A.
2?(?)?1,则“
33 2”应填的实数是( ) 2 3 B.
2 C.?
3
3 D.?
2
第2课时 实数的运算
【知识梳理】
1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数.
3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.
4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒
数.
5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:
加法交换律:a+b=b+a(a、b为任意有理数)
加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数)
【思想方法】
数形结合,分类讨论
【例题精讲】
例1.某校认真落实市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.
例2.下表是5个城市的国际标准时间(单位:时)那么时间2006年6月17日上
午9时应是( )
伦敦 北京 汉城 纽约 多伦多 -5 -4 0 8 9 国际标准时间(时) 例2图
A.伦敦时间2006年6月17日凌晨1时. B.纽约时间2006年6月17日晚上22时. C.多伦多时间2006年6月16日晚上20时 . D.汉城时间2006年6月17日上午8时.
例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆
组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.
……
例3图
例4.下列运算正确的是( ) A.3?
2?5 B.3?2?6
C.(3?1)2?3?1 D.52?32?5?3 例5.计算: (1) 3?2?8?(??1)0??1?10 (2)?3?(??2)?tan45o 9
(3)22?(3?1)0?()?1; (4)(?1)2008??0?()?1?38.
【当堂检测】
1.下列运算正确的是( )
A.a4×a2=a6 B.5a2b?3a2b?2 C.(?a)?a D.(3ab)?9ab
325233612132.某市2008年第一季度财政收入为41.76亿元,用科学记数法(结果保留两个有效数字)表示为( )
A.41?108元 B.4.1?109元 C.4.2?109元 D.41.7?108元 3.估计68的立方根的大小在( )
A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间 4.如图,数轴上点P表示的数可能是( ) A.7
B.?7 D.?10
P ?3 ?2?O1 2 3 1 第 4题图
C.?3.2 5.计算:
1(1)(?1)2009?()?2?16?cos600 (2)
2
??1?3?1????4 ?2??0?1第3课时 整式与分解因式
【知识梳理】
1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,
mnm?n即a?a?a(m、n为正整数);②同底数幂的除法法则:同底数幂相除,mnm?n底数不变,指数相减,即a?a?a(a≠0,m、n为正整数,m>n);③
幂的乘方法则:幂的乘方,底数不变,指数相乘,即(ab)?ab(n为正整数);
0④零指数:a?1(a≠0);⑤负整数指数:a?n?nnn1(a≠0,n为正整数); an
2.整式的乘除法:
(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.
(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.
(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即(a?b)(a?b)?a?b;
(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去) 它们的积的2倍,即(a?b)?a?2ab?b
3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.
4.分解因式的方法:
⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
⑵运用公式法:公式a2?b2?(a?b)(a?b) ; a2?2ab?b2?(a?b)2
5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:
⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号的项“ 1”易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等
【例题精讲】 【例1】下列计算正确的是( )
A. a+2a=3a
236222222 B. 3a-2a=a
222C. a?a=a D.6a÷2a=3a 【例2】(2008年)任意给定一个非零数,按下列程序计算,最后输出的
结果是( )
m 平方 -m ÷m +2 结果 A.m B.m22 C.m+1 D.m-1
2【例3】若3a?a?2?0,则5?2a?6a? . 【例4】下列因式分解错误的是( )
A.x?y?(x?y)(x?y) C.x?xy?x(x?y)
222
B.x?6x?9?(x?3)
D.x?y?(x?y)
22222
【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是________
【例6】给出三个多项式:
1211x?2x?1,x2?4x?1,x2?2x.请选择你222最喜欢的两个多项式进行加法运算,并把结果因式分解.
【当堂检测】
31.分解因式:9a?a? , ?x?2x?x?_____________
322.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时, (a,b)=(c,d).定义运算“?”:(a,b)?(c,d)=(ac-bd,ad+bc).若(1,2)?(p,q)=(5,0),则p= ,q= . 3. 已知a=1.6?109,b=4?103,则a2?2b=( )
A. 2?107 B. 4?1014 C.3.2?105 D. 3.2?1014 . 4.先化简,再求值:(a?b)?(a?b)(2a?b)?3a,其中
22a??2?3,b?3?2.
5.先化简,再求值:(a?b)(a?b)?(a?b)?2a,其中a?3,b??
221. 3