恰好是甲和乙的概率.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.A 解析:A 【解析】 【分析】
直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案. 【详解】
∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为
1 , 3AD1?, BG3∵BG=12,
∴
∴AD=BC=4, ∵AD∥BG, ∴△OAD∽△OBG, ∴∴
OA1? OB30A1?
4?OA3解得:OA=2, ∴OB=6,
∴C点坐标为:(6,4), 故选A. 【点睛】
此题主要考查了位似变换以及相似三角形的判定与性质,正确得出AO的长是解题关键.
2.C
解析:C 【解析】 【分析】 【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确; ②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误; ④由纵坐标看出,甲乙二人都跑了20千米,故④正确; 故选C.
3.B
解析:B 【解析】 【分析】
①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y与x的关系式,从而得解. 【详解】
①点P在AB上时,0≤x≤3,点D到AP的距离为AD的长度,是定值4; ②点P在BC上时,3<x≤5,
∵∠APB+∠BAP=90°, ∠PAD+∠BAP=90°, ∴∠APB=∠PAD, 又∵∠B=∠DEA=90°, ∴△ABP∽△DEA,
ABAPABAP? =,
DEADDEAD3x即?, y4
∴∴y=
12, x纵观各选项,只有B选项图形符合, 故选B.
4.A
解析:A 【解析】
试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.
考点:平行线的性质.
5.B
解析:B 【解析】 【分析】
根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数. 【详解】
解:∵DE是AC的垂直平分线, ∴DA=DC, ∴∠DCE=∠A, ∵∠ACB=90°,∠B=34°, ∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°, 故选B. 【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
6.C
解析:C 【解析】
A、6不能化简;B、12=23,故错误;C、18=32,故正确;D、36=6,故错误; 故选C.
点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.
7.C
解析:C 【解析】 【分析】
?x?a?0?解关于x的不等式组?3,结合解集为x>4,确定a的范围,再由分式方程
??x?2?2(x?1)1?ax1?2?有整数解,且a为整数,即可确定符合条件的所有整数a的值,最后求x?22?x出所有符合条件的值之和即可. 【详解】 由分式方程解得x=
1?ax1?2?可得1﹣ax+2(x﹣2)=﹣1 x?22?x2, 2?a1?ax1?2?有整数解,且a为整数 x?22?x∵关于x的分式方程∴a=0、3、4
?x?a?0?x?a? 关于x的不等式组?3整理得?x?4???x?2?2(x?1)?x?a?0?∵不等式组?3的解集为x>4
??x?2?2(x?1)∴a≤4
于是符合条件的所有整数a的值之和为:0+3+4=7 故选C. 【点睛】
本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
8.C
解析:C 【解析】 【分析】
根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积. 【详解】
2=1cm,高是3cm. 先由三视图确定该几何体是圆柱体,底面半径是2÷所以该几何体的侧面积为2π×1×3=6π(cm2). 故选C. 【点睛】
此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.
9.D
解析:D 【解析】 【分析】
根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数
应为3个,由此可排除C,进而得到答案. 【详解】
解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,
A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;
B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;
C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;
D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件, 故选D. 【点睛】
本题考查规律型:数字的变化类.
10.D
解析:D 【解析】
分析:根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判定即可. a0?a2=a4, 详解:∵a2÷
∴选项A不符合题意; ∵a2÷(a0?a2)=1, ∴选项B不符合题意; ∵(-1.5)8÷(-1.5)7=-1.5, ∴选项C不符合题意; ∵-1.58÷(-1.5)7=1.5, ∴选项D符合题意. 故选D.
点睛:此题主要考查了同底数幂的除法法则,同底数幂的乘法的运算方法,以及零指数幂的运算方法,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.
11.A
解析:A 【解析】
试题分析:根据CD:AD=1:2,AC=35米可得:CD=3米,AD=6米,根据AB=10米,∠