结果也相等。
(4)如果用字母表示比例的四个项,即 a b = c d, 那么这个规律可表示成ad = bc 或 bc = ad。
(5)在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
例6、(比例基本性质的应用)根据2 × 7 = 1.4 × 10这个等式写出几个比例。
分析与解:根据比例的基本性质,可以得出2和7、1.4和10这两组数要么同时是比例的外项,要
么同时是比例的内项。
1.4 2 = 7 10 1.4 7 = 2 10 10 2 = 7 1.4 10 7 = 2 1.4 2 1.4 = 10 7 2 10 = 1.4 7 7 1.4 = 10 2 7 10 = 1.4 2
点评:像这样的比例一共可以写8个。但它们不变的是2和7要么同时为内项,要么同时为外项,
而1.4和10这一组数也一样。写的时候可以一组一组地写了。
例7、(按比例放大的含义)
王叔叔在电脑上将下面的图片按比例放大,放大后的图片的长是12.5厘米,你有什么发现?
4厘米
5厘米
分析与解:按比例放大就是把原图形中的各部分线段都按相同的比放大,放大前后的相关线段的厘
米数是可以组成比例的。两张图片长的比与宽的比可以组成比例,两张图片中各自长、宽的比也可以组成比例。
12.5 5 = 宽 4 或 12.5 宽 = 5 4
例8、(解比例)上图中宽是多少厘米?
分析与解:在解比例时,根据比例的基本性质把比例转化为积相等的式子,然后再根据等式的性质
解答。
解:设宽是ⅹ厘米。 12.5 5 = ⅹ 4
5ⅹ = 12.5 × 4 ┈┈ 根据比例的基本性质 5ⅹ = 50 ⅹ = 10
答:放大后图片的宽是10厘米。
点评:像上面这样求比例中的未知项,叫做解比例。 同学们,你会解答
12.55 = 这个比例吗?试试看吧! ?4
小学数学总复习专题讲解及训练(六)
模拟试题
1、一张长方形图片,长12厘米,宽9厘米。按1 3的比缩小后,新图片的长是( )厘米,宽是( )厘米,这张图片( )不变,大小( )。
2、一块正方形的花手帕,边长10厘米,将其按( )的比放大后,边长变为30厘米。 3、按2 1的比画出平行四边形放大后的图形,按1 3的比画出长方形缩小后的图形。 4、应用比例的意义,判断下面哪一组中的两个比可以组成比例? 6∶10和9∶15 20∶5和4∶1 5∶1和6∶2
5、在2∶5、12∶0.2、310∶15 三个比中,与5.6∶14 能组成比例的一个比是( )。 6、在比例里,两个( )的积和两个( )积相等。 7、如果A×3=B×5,那么A∶B= ( ) ∶ ( )。 8、从6、24、20、18与5这五个数中选出四个数组成一个比例是: ( ) ∶ ( ) = ( ) ∶ ( )。
9、根据3×8 = 4×6写成的比例是( )、( )或( )。 10、甲数的25% 等于乙数的75%,那么甲数与乙数的比是( )∶( )。
13、解比例
ⅹ∶3 = 78 ∶14 9x = 4.50.8 121
6 ∶ 5 = 2 ∶
34 ∶ = 3∶12 38 ∶ = 5%∶0.6 1.3x
18 = 3.6
14、在一个比例里,两个外项的积是30,已知一个内项是10,另一个内项是(
参考答案:
)。
1、一张长方形图片,长12厘米,宽9厘米。按1 3的比缩小后,新图片的长是( 4 )厘米,宽是( 3 )厘米,这张图片( 形状 )不变,大小( 变了 )。
2、一块正方形的花手帕,边长10厘米,将其按( 3 1 )的比放大后,边长变为30厘米。 3、按2 1的比画出平行四边形放大后的图形,按1 3的比画出长方形缩小后的图形。 4、应用比例的意义,判断下面哪一组中的两个比可以组成比例? 6∶10和9∶15 20∶5和4∶1 5∶1和6∶2 (1) 因为6 :10 =
33,9 :15 = ,所以6 :10 = 9 :15。 55(2) 因为20 :5 = 4,4 :1 = 4,所以20 :5 = 4 :1。
(3) 因为5 :1 = 5,6 :2 = 3,所以5 :1 和 6 :2不能组成比例。
5、在2∶5、12∶0.2、31∶15 三个比中,与5.6∶14 能组成比例的一个比是(2∶5 )。