4.B 在偶次根式中,被开方式必须大于等于零,所以有4?x?0且x?2?0,解得2?5.A 由奇偶性定义,因为6.解:令xx?4,即定义域为[2,4].
f(?x)=2(?x)3?3sin(?x)=?2x3+3sinx=?f(x),所以f(x)=2x3?3sinx是奇函数.
2?x ,故选D
1?2x7.解:选D 8. 解:选D 9. 解:选B 10.解:选C 11. 解:0?x+1?1,所以?1?x?0,故选B 12. 解:
=1?t,则f(t)=1+1?t2?t=2?2t?11?2t,所以
f(x)=选C 13. 解:选B 14. 解:选B 15.解:选B 16. 解:
f(x)的定义域为[?1,4),选D
17.解:根据奇函数的定义知选C 18. 解:选C 19. 解:选C 20.解:因为函数
y=ax与y=logax(a?0,a?1)互为反函数,故它们的图形关于直线y=x轴
对称,选C 21.A 22.D
23.解:这是24.解:这是
lnx?1l10=lim=,故选B. 型未定式limx→ex?ex→ex0e?型未定式 ??csc2xlncotxxcotx=?limx?sinx=?limlim=lim=?1 2++++x→0x→01x→0x→0lnxsinxcosxsinxcosxx故选D.
ax2+bax2225.解:因为lim=2所以a=2,故选A =2所以lim(ax+b)=0,得b=0,limx→0xsinxx→0xsinxx→026.解:b=nbn?nan+bn?nbn+bn=bn2=b选B
27.解:选D
111=limx=,故选B
x→?2xx→?2x2sinmxmxm=lim= 故选A 29.解:limx→0sinnxx→0nxn28.解:因为limxsinax3+bax32=1所以lim(ax+b)=0,得b=0,lim=1,所以a=1,故选B 30.解:因为limx→0xtan2xx→0xtan2xx→0cosxx?cosxx=1,选A
31.解:lim=limx→?x+cosxx→?cosx1+x1?32.解:因为limx→0+sinx+1)=1 f(x)=lim(ex?1)=0,lim?f(x)=lim(?+x→0x→0x→0所以limx→0f(x)不存在,故选D
1411xx33.解:lim(1+)x=[lim(1+)x]4=e4,选D
x→0x→0441tanx-lnxsin2x=lim+ =lim+=0,选C 34.解:极限lim()x→0+xx→0cotxx→0x
20
35.解:lim?xsin?x→0?11??sinx?=0?1=?1,选A xx?36.解:lim37.解:
x→?xsin111=limx=选B kxx→?kxklimsinx=1,选B 38.解:选A 39. 解:选D
x→??240.解:limx→1x2+ax+6=0,a=?7,选B
tanax=lim?(x+2),a=2,选C x→0x41.解:
x→0lim+42.解:根据无穷小量的定义知:以零为极限的函数是无穷小量,故选C
sin(2x+x2)2x+x243.解:因为lim=lim=2,故选C
x→0x→0xx44.解:因为limln(1+x)=1,故选B
x→0xtan(3x+x2)3x+x245.解:因为lim=lim=3,故选C
x→0x→0xx46.解:因为lim1?x2(1+x)1?xax→1=lim1+x1=,故选C
x→12(1+x)21ax1+x?12=lim+=0,所以a?1,故选A 47.解:因为limx→0+x→0xxtan2x=0,故选D 48.解:因为lim2x→0x49.解:由书中定理知选C 50.解:因为lim11cos=0,故选C x→?xx2x+3x?22xln2+3xln3=lim=ln6,选B 51.解:因为limx→0x→0x152.解:选A 53.解:lim2(1?cosx)=1x→0sinx2x→+?,选C
54.解:因为55.解:选A 56.解:limlimf(x)=1,选A
sinx=0,选C
x→01+secx57.解:选C
x+x2sin58.解:limx→0x1x=1,选D
59.解:根据连续的定义知选B
21
60.C 61.解:选A 62.解:选A 63.解:
x→0lim+f(x)=?2?f(0), lim?f(x)=?x→0?2=f(0),选B
64.解:选A 65.解:因为lim+x→1x2?1x?1=lim+x→?(x?1)(x+1)(x?1)(x+1)=lim?=?2, =2,lim?x→1x→x?1x?1x?1x2?1选A
66.解:因为
x→0+limf(x)=1=f(0),又lim?f(x)=1=f(0),所以f(x)在x=0点连续,
x→0 但
f?'(0)=lim?x→0f(x)?f(0)x+1?1=lim?=1, x→0xx
f(x)?f(0)x2+1?1f+'(0)=lim+=lim+=0所以f(x)在x=0点不可导,选C
x→0x→0xxlimf(x)=1?f(0),又lim?f(x)=1?f(0),所以f(x)在x=0点不连续,从而在x=0处不可导,但
x→067.解:选C 68.解:因为
当xx→0+→0时,极限存在,选B
3nx=?3,选A
x→?1?nx69.解:选B 70.解:
f(x)=lim71.解:limx→01+x?11=?f(0),选A
x272.解:选C 73.解:因为lim+x→1f(x)=lim+(x2+arccotx→1x→11)=0, x?1 故选B
x→1lim?f(x)=lim?(x2+arccot1)=?x?174.解:选D 75.解:因为limx→0y=?,limy=?2,曲线既有水平渐近线y=?2,又有垂直渐近线x=0,选C
x→?76.解:因为
x→+?limxsin1=1,所以有水平渐近线y=1,但无铅直渐近线,选A x77.D 78.C 解:79.C 解:g'(x)y?=excosx?exsinx,y?(0)=1?0=1.选C.
=cosx,所以f[g'(x)]=ecosx,故选C.
11f(x0?h)?f(x0)f(x0?h)?f(x0)1122= lim(?)=?f'(x0)=?1,选C 80.解:limh→0h→01h22?h2f(a+x)?f(a?x)f(a+x)?f(a)f(a?x)?f(a)=lim[+]=2f'(a),选B 81.解:limx→0x→0xx?xf(2+h)?f(2)f(2?h)?f(2)f(2+h)?f(2?h)= lim[+ ]=2f'(2),故选A 82.解:因为limh→0h→0hh?h
22
f(x)?f(0)x(x?1)(x?2)(x?3)=lim=?6,故选B
x→0x→0xxf(?h)?f(0)f(h)?f(?h)f(h)?f(0)+ = lim[]=2f'(0),故选C 84.解:因为limh→0h→0?hhh83.解:
f'(0)=lim85.解:因为limh→0f( x0-h )?f(x0)=?f'(x0),故选B
hf(1?2h)?f(1)1f(1?2h)?f(1)(?2)=?2f'(1)= ,故选D = limh→0h?2h2?x286.解:因为limh→087.解:
f'(x)=?2xe,f''(x)=?2e?x2+4xe2?x2,
f''(0)=?2 选C
88.解:选B 89.解:90.解:91.解:92.解:
y=x29+a28x28+.....+a1x+a0,所以y(29)=29!,选B
y'=f'(ex)ex+f(x)+f(ex)ef(x)?f'(x),选C f'(0)=limx→0f(x)?f(0)x(x?1)(x?2)?(x?100)=lim=100!,选B x→0xxy'=(exlnx)'=xx(1+lnx),选D f+'(2)=lim+x→293.解:
x?2?0f(x)?f(2)=lim+=1, x→2x?2x?2x?2?0f(x)?f(2)=lim?=?1,选D x→2x?2x?2f?'(2)=lim?x→294.解:
y'=e?xln(2x)'=(2x)?x[?ln(2x)?1],选D
??95.解:选C 96.解:
y=e1[lnf(x)?lng(x)]21f'(x)g'(x),y?=y?[?],选A
2f(x)g(x)97.C 98.A 99.B 100.A 101. C 102.B 103.C 104.解:
f?(x)=1?ex.令f?(x)=0,则x=0.当x?(??,0)时f?(x)?0,当x?(0,+?)时f?(x)?0,因此
f(x)=x?ex在(??,0)上单调递增, 在(0,+?)上单调递减.答案选C.
105.解:根据求函数极值的步骤,
(1)关于x求导,(2)令
f'(x)=4x3?6x2=2x2(x?3)
f'(x)=0,求得驻点x=0,3
(3)求二阶导数(4)因为(5)因为
f\x)=12x2?12x=12x(x?1)
f''(3)=72?0,由函数取极值的第二种充分条件知f(3)=27为极小值.
f''(0)=0,所以必须用函数取极值的第一种充分条件判别,但在x=0左右附近处,f'(x)不改变符号,所以f(0)不是极值. 答案选A.
106.
y'(0)=1,曲线y=ex在点(0,1)处的切线方程为y?1=x,选A
23
107.解:函数
f(x)=13121x+x+6x+1的图形在点(0,1)处的切线为y?1=6x,令y=0,得x=?,选A
632108.
y'(4)=124=1=11,抛物线y=x在横坐标x=4的切线方程为y?2=(x?4),选A
44109.
y'x=1xx=1=1,切线方程是y=x?1,选D
110.
f(x)=x?x2+c,c=1,选A
11y'=2e2x+(x+1),y'(0)=3,切线方程y?2=3x 法线方程y?2=?x,选A
23111.解:112.选C
113.由函数取得极值的必要条件(书中定理)知选D 114.解:选D
2x2(1+x2)?4x22?2x2,y''==, 115.解:y'=1+x2(1+x2)2(1+x2)2?4x(1+x2)2?(2?2x2)2(1+x2)2x y'''=(1+x2)42(1+x2)?4x24x3?12x==,令y''=0得x=?1,1,y'''(?1)?0,
(1+x2)3(1+x2)3(1,ln2)与(?1,ln2)为拐点,选B
116.选D 117.选D 118.选C 119.解:120.解:
y+xy'=ex+y(1+y')=xy(1+y'),选B y'=ey+xeyy',选C,应选A
=cosx,所以f[g'(x)]=ecosx,故选C
121.解:g'(x)122.解:g'(x)=sinx,所以f[g'(x)]=esinx,故选A
123.解:选A 124.解:dy125.解:因为dy=esin2xdsin2x;故选B
dy1=f'(x0)=,故选B
?x→0?x2=f'(x0)?x+o(?x),所以lim126.解:选C 127.解:选A 128.解:130.B 131.D
y'=f'(sinx)cosx,选C 129.解:选B
x2x2?1+11x2dx=?dx=?(x?1+)dx=?x+ln1+x+C. 132.解:?1+x1+x1+x2所以答案为C.
133.解:由于(2arccosx)?=?21?x2,所以答案为B.
24
专升本高等数学必做复习资料200题(含答案)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)
![](/skin/haowen/images/icon_star.png)