小学奥数基础教程(四年级) - 16 -
此类除法竖式应根据除法竖式的特点,如商的空位补0、余数必须小于除数,以及空格间的相互关系等求解,只要求出除数和商,问题就迎刃而解了。
例6 把左下方除法算式中的*号换成数字,使之成为一个完整的式子(各*所表示的数字不一定相同)。
分析与解:由上面的除法算式容易看出,商的十位数字“*”是0,即商为
。
因为除数与8的积是两位数,除数与商的千位数字的积是三位数,知商的千位数是9,即商为9807。
因为“除数×9”是三位数,所以除数≥12;又因为“除数×8”是两位数,所以除数≤12。推知除数只能是12。被除数为9807×12=117684。 除法算式如上页右式。 练习10
1.在下面各竖式的□内填入合适的数字,使竖式成立:
2.右面的加法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字。问:“小”代表什么数字?
3.在下列各算式中,不同的汉字代表不同的数字相同的汉字代表相同的数字。求出下列各式:
4.在下列各算式中,相同的字母代表相同的数字,不同的字母代表不同的数字。这些算式中各字母分别代表什么数字?
第11讲 归一问题与归总问题
在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。用这种解题思路解答的应用题,称为归一问题。所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根?(损耗忽略不计)
分析:以一根钢轨的重量为单一量。 (1)一根钢轨重多少千克? 1900÷4=475(千克)。
(2)95000千克能制造多少根钢轨? 95000÷475=200(根)。
解:95000÷(1900÷4)=200(根)。 答:可以制造200根钢轨。
例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克? 分析:以1头奶牛1天产的牛奶为单一量。 (1)1头奶牛1天产奶多少千克? 630÷5÷7=18(千克)。
(2)8头奶牛15天可产牛奶多少千克? 18×8×15=2160(千克)。
解:(630÷5÷7)×8×15=2160(千克)。 答:可产牛奶2160千克。
例3 三台同样的磨面机2.5时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间?
分析与解:以1台磨面机1时磨的面粉为单一量。 (1)1台磨面机1时磨面粉多少千克? 2400÷3÷2.5=320(千克)。
小学奥数基础教程(四年级) - 17 -
(2)8台磨面机磨25600千克面粉需要多少小时?
25600÷320÷8=10(时)。 综合列式为
25600÷(2400÷3÷2.5)÷8=10(时)。 例4 4辆大卡车运沙土,7趟共运走沙土336吨。现在有沙土420吨,要求5趟运完。问:需要增加同样的卡车多少辆?
分析与解:以1辆卡车1趟运的沙土为单一量。 (1)1辆卡车1趟运沙土多少吨? 336÷4÷7=12(吨)。
(2)5趟运走420吨沙土需卡车多少辆? 420÷12÷5=7(辆)。 (3)需要增加多少辆卡车? 7-4=3(辆)。 综合列式为
420÷(336÷4÷7)÷5-4=3(辆)。
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。所谓“总量”是指总路程、总产量、工作总量、物品的总价等。
例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成?
分析:(1)工程总量相当于1个人工作多少小时?
15×8=120(时)。
(2)12个人完成这项工程需要多少小时? 120÷12=10(时)。 解:15×8÷12=10(时)。 答:12人需10时完成。 例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。若要4时到达,则每小时需要多行多少千米?
分析:从甲地到乙地的路程是一定的,以路程为总量。
(1)从甲地到乙地的路程是多少千米? 60×5=300(千米)。
(2)4时到达,每小时需要行多少千米? 300÷4=75(千米)。
(3)每小时多行多少千米? 75-60=15(千米)。
解:(60×5)÷4——60=15(千米)。 答:每小时需要多行15千米。
例7 修一条公路,原计划60人工作,80天完成。现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成?
分析:(1)修这条公路共需要多少个劳动日(总量)?
60×80=4800(劳动日)。
(2)60人工作20天后,还剩下多少劳动日? 4800-60×20=3600(劳动日)。 (3)剩下的工程增加30人后还需多少天完成? 3600÷(60+30)=40(天)。
解:(60×80-60×20)÷(60+30)=40(天)。 答:再用40天可以完成。 练习11
1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷?
2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米?
3.一种幻灯机,5秒钟可以放映80张片子。问:48秒钟可以放映多少张片子?
4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷?
5.平整一块土地,原计划8人平整,每天工作7.5时,6天可以完成任务。由于急需播种,要求5天完成,并且增加1人。问:每天要工作几小时?
6.食堂管理员去农贸市场买鸡蛋,原计划按每千克3.00元买35千克。结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。问:鸡蛋价格下调后是每千克多少元?
7.锅炉房按照每天4.5吨的用量储备了120天的供暖煤。供暖40天后,由于进行了技术改造,每天能节约0.9吨煤。问:这些煤共可以供暖多少天?
第12讲 年龄问题
年龄问题是一类以“年龄为内容”的数学应用题。
年龄问题的主要特点是:二人年龄的差保持不变,它不随岁月的流逝而改变;二人的年龄随着岁月的变化,将增或减同一个自然数;二人年龄的倍数关系随着年龄的增长而发生变化,年龄增大,倍数变小。
根据题目的条件,我们常将年龄问题化为“差倍问题”、“和差问题”、“和倍问题”进行求解。 例1 儿子今年10岁,5年前母亲的年龄是他的6倍,母亲今年多少岁?
分析与解:儿子今年10岁,5年前的年龄为5岁,那么5年前母亲的年龄为5×6=30(岁),因此母亲今年是
30+5=35(岁)。
小学奥数基础教程(四年级) - 18 -
例2 今年爸爸48岁,儿子20岁,几年前爸爸的年龄是儿子的5倍? 分析与解:今年爸爸与儿子的年龄差为“48——20”岁,因为二人的年龄差不随时间的变化而改变,所以当爸爸的年龄为儿子的5倍时,两人的年龄差还是这个数,这样就可以用“差倍问题”的解法。当爸爸的年龄是儿子年龄的5倍时,儿子的年龄是 (48——20)÷(5——1)=7(岁)。 由20-7=13(岁),推知13年前爸爸的年龄是儿子年龄的5倍。
例3 兄弟二人的年龄相差5岁,兄3年后的年龄为弟4年前的3倍。问:兄、弟二人今年各多少岁? 分析与解:根据题意,作示意图如下:
由上图可以看出,兄3年后的年龄比弟4年前的年龄大5+3+4=12(岁),由“差倍问题”解得,弟4年前的年龄为(5+3+4)÷(3-1)=6(岁)。由此得到
弟今年6+4=10(岁), 兄今年10+5=15(岁)。
例4 今年兄弟二人年龄之和为55岁,哥哥某一年的岁数与弟弟今年的岁数相同,那一年哥哥的岁数恰好是弟弟岁数的2倍,请问哥哥今年多少岁? 分析与解:在哥哥的岁数是弟弟的岁数2倍的那一年,若把弟弟岁数看成一份,那么哥哥的岁数比弟弟多一份,哥哥与弟弟的年龄差是1份。又因为那一年哥哥岁数与今年弟弟岁数相等,所以今年弟弟岁数为2份,今年哥哥岁数为2+1=3(份)(见下页图)。
由“和倍问题”解得,哥哥今年的岁数为 55÷(3+2)×3=33(岁)。
例5 哥哥5年前的年龄与妹妹4年后的年龄相等,哥哥2年后的年龄与妹妹8年后的年龄和为97岁,请问二人今年各多少岁?
分析与解:由“哥哥5年前的年龄与妹妹4年后的年龄相等”可知兄妹二人的年龄差为“4+5”岁。由“哥哥2年后的年龄与妹妹8年后的年龄和为97
岁”,可知兄妹二人今年的年龄和为“97——2——8”岁。由“和差问题”解得, 兄[(97——2——8)+(4+5)]÷2=48(岁), 妹[(97——2——8)-(4+5)]÷2=39(岁)。 例6 1994年父亲的年龄是哥哥和弟弟年龄之和的4倍。2000年,父亲的年龄是哥哥和弟弟年龄之和的2倍。问:父亲出生在哪一年?
分析与解:如果用1段线表示兄弟二人1994年的年龄和,则父亲1994年的年龄要用4段线来表示(见下页图)。
父亲在2000年的年龄应是4段线再加6岁,而兄弟二人在2000年的年龄之和是1段线再加2×6=12(岁),它是父亲年龄的一半,也就是2段线再加3岁。由
1段+12岁=2段+3岁, 推知1段是9岁。所以父亲1994年的年龄是9×4=36(岁),他出生于
1994——36=1958(年)。
例7今年父亲的年龄为儿子的年龄的4倍,20年后父亲的年龄为儿子的年龄的2倍。问:父子今年各多少岁?
解法一:假设父亲的年龄一直是儿子年龄的4倍,那么每过一年儿子增加一岁,父亲就要增加4岁。这样,20年后儿子增加20岁,父亲就要增加80岁,比儿子多增加了80-20=60(岁)。
事实上,20年后父亲的年龄为儿子的年龄的2倍,根据刚才的假设,多增加的60岁,正好相当于20年后儿子年龄的(4——2=)2倍,因此,今年儿子的年龄为
(20×4-20)÷(4-2)-20=10(岁), 父亲今年的年龄为10×4=40(岁)。
解法二:如果用1段线表示儿子今年的年龄,那么父亲今年的年龄要用4段线来表示(见下图)。
20年后,父亲的年龄应是4段线再加上20岁,而儿子的年龄应是1段线再加上20岁,是父亲年龄的一半,也就是2段线再加上10岁。由 1段+20=2段+10,
求得1段是10岁,即儿子今年10岁,从而父亲今年40岁。
小学奥数基础教程(四年级) - 19 -
例8 今年爷爷78岁,长孙27岁,次孙23岁,三孙16岁。问:几年后爷爷的年龄等于三个孙子年龄之和?
分析:今年三个孙子的年龄和为27+23+16=66(岁),爷爷比三个孙子的年龄和多78——66=12(岁)。每过一年,爷爷增加一岁,而三个孙子的年龄和却要增加1+1+1=3(岁),比爷爷多增加3-1=2(岁)。因而只需求出12里面有几个2即可。
解:[78-(27+23+16)]÷(1+1+1-1)=6(年)。 答:6年后爷爷的年龄等于三个孙子年龄的和。 练习12
1.父亲比儿子大30岁,明年父亲的年龄是儿子年龄的3倍,那么今年儿子几岁?
2.王梅比舅舅小19岁,舅舅的年龄比王梅年龄的3倍多1岁。问:他们二人各几岁?
3.小明今年9岁,父亲39岁,再过多少年父亲的年龄正好是小明年龄的2倍?
4.父亲年龄是女儿的4倍,三年前父女年龄之和是49岁。问:父女两人现在各多少岁? 5.一家三口人,三人年龄之和是74岁,妈妈比爸爸小2岁,妈妈的年龄是儿子年龄的4倍。问:三人各是多少岁?
6.今年老师46岁,学生16岁,几年后老师年龄的2倍与学生年龄的5倍相等?
7.已知祖孙三人,祖父和父亲年龄的差与父亲和孙子年龄的差相同,祖父和孙子年龄之和为82岁,明年祖父的年龄恰好等于孙子年龄的5倍。问:祖孙三人各多少岁?
8.小乐问刘老师今年有多少岁,刘老师说:“当我像你这么大时,你才3岁;当你像我这么大时,我已经42岁了。”你能算出刘老师有多少岁吗?
第13讲 鸡兔同笼问题与假设法
鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只? 分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数
增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只), 有鸡16-6=10(只)。 答:有6只兔,10只鸡。
当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。 有鸡(4×16-44)÷(4-2)=10(只), 有兔16——10=6(只)。
由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人? 分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3——1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。
同样,也可以假设100人都是小和尚,同学们不妨自己试试。
在下面的例题中,我们只给出一种假设方法。 例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?
分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。
假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304——280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19——11=8(元),所以
买普通文化用品 24÷8=3(套), 买彩色文化用品 16-3=13(套)。
例4 鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?
小学奥数基础教程(四年级) - 20 -
分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200——20=180(只)。 现在以兔换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100——30=70(只)。
解:有兔(2×100——20)÷(2+4)=30(只), 有鸡100——30=70(只)。 答:有鸡70只,兔30只。
例5 现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?
分析:本题与例4非常类似,仿照例4的解法即可。
解:小瓶有(4×50-20)÷(4+2)=30(个), 大瓶有50-30=20(个)。
答:有大瓶20个,小瓶30个。
例6 一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?
分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。
利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45-36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。
解:4×36÷(45-36)×45=720(吨)。 答:这批钢材有720吨。
例7 乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程中共打破了几只花瓶?
分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120-115.5=4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。 解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。
答:共打破3只花瓶。
例8 小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜
比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?
分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了 12×(2+3)=60(下)。 可求出小乐每分钟跳
(780——60)÷(2+3+3)=90(下), 小乐一共跳了90×3=270(下),因此小喜比小乐共多跳
780——270×2=240(下)。 练习13
1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?
2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?
3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本1.9元,日记本每本3.1元。问:买活页簿、日记本各几本? 4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?
5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?
6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天中共有几个雨天? 7.振兴小学六年级举行数学竞赛,共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题? 8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?
9.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有118条腿和20对翅膀。问:每种小虫各有几只? 10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?
第14讲 盈亏问题与比较法(一)
人们在分东西的时候,经常会遇到剩余(盈)或不足(亏),根据分东西过程中的盈或亏所编成的应用题叫做盈亏问题。
例1 小朋友分糖果,若每人分4粒则多9粒;若每人分5粒则少6粒。问:有多少个小朋友分多少粒糖?