好文档 - 专业文书写作范文服务资料分享网站

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

天下 分享 时间: 加入收藏 我要投稿 点赞

(表D.0.2)---绿化(子单位)工程质量竣工验收报告表29804

初一实数所有知识点总结和常考题

知识点:

一、实数的概念及分类

1、实数的分类 正有理数

有理数零有限小数和无限循环小数 实数负有理数 正无理数

无理数无限不循环小数 负无理数

整数包括正整数、零、负整数。

正整数又叫自然数。

正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: (1)开方开不尽的数,如7,32等;

π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;

3(3)有特定结构的数,如0.1010010001…等; 二、实数的倒数、相反数和绝对值

1、相反数

实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。

2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数

如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 4.实数与数轴上点的关系:

每一个无理数都可以用数轴上的一个点表示出来, 数轴上的点有些表示有理数,有些表示无理数,

c1

(表D.0.2)---绿化(子单位)工程质量竣工验收报告表29804

实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。 三、平方根、算数平方根和立方根

1、平方根

(1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即:如果x2?a,那么x叫做a的平方根.

(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意

义。

(3)平方与开平方互为逆运算:?3的平方等于9,9的平方根是?3 (4)一个正数有两个平方根,即正数进行开平方运算有两个结果;

一个负数没有平方根,即负数不能进行开平方运算 (5)符号:正数a的正的平方根可用a表示,a也是a的算术平方根;

正数a的负的平方根可用-a表示.

(6)x2?a<—>x??a a是x的平方x的平方是a x是a的平方根a的平方根是x 2、算术平方根

(1)算术平方根的定义:一般地,如果一个正数x的平方等于a,即x2?a,那么这个正数x叫做a的算

术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数. 规定:0的算术平方根是0.

也就是,在等式x2?a(x≥0)中,规定x?a。

(2)a的结果有两种情况:当a是完全平方数时,a是一个有限数;

当a不是一个完全平方数时,a是一个无限不循环小数。

(3)当被开方数扩大时,它的算术平方根也扩大;

当被开方数缩小时与它的算术平方根也缩小。 (4)夹值法及估计一个(无理)数的大小 (5)x2?a(x≥0)<—>x?a

a是x的平方x的平方是a

x是a的算术平方根a的算术平方根是x

(6)正数和零的算术平方根都只有一个,零的算术平方根是零。

a(a?0)a?0

a2?a?;注意a的双重非负性:

-a(a<0)a?0

(7)平方根和算术平方根两者既有区别又有联系:

区别在于正数的平方根有两个,而它的算术平方根只有一个;

联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。 3、立方根

c2

(表D.0.2)---绿化(子单位)工程质量竣工验收报告表29804

(1)立方根的定义:如果一个数x的立方等于a,这个数叫做a的立方根(也叫做三次方根),即如果x3?a,

那么x叫做a的立方根

(2)一个数a的立方根,记作3a,读作:“三次根号a”,

其中a叫被开方数,3叫根指数,不能省略,若省略表示平方。 (3)一个正数有一个正的立方根;

0有一个立方根,是它本身; 一个负数有一个负的立方根; 任何数都有唯一的立方根。

(4)利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即3?a??3a?a?0?。

(5)x3?a<—>x?3a a是x的立方x的立方是a x是a的立方根a的立方根是x

(6)3?a??3a,这说明三次根号内的负号可以移到根号外面。

四、科学记数法和近似数

1、有效数字

一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字。

2、科学记数法

把一个数写做?a?10的形式,其中1?a?10,n是整数,这种记数法叫做科学记数法。 五、实数大小的比较 1、数轴

规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意三要素缺一不可)。 解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。 2、实数大小比较的几种常用方法

(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。 (2)求差比较:设a、b是实数,

na?b?0?a?b,a?b?0?a?b,

aaaa?b?0?a?b(3)求商比较法:设a、b是两正实数,?1?a?b;?1?a?b;?1?a?b;

bbb(4)绝对值比较法:设a、b是两负实数,则a?b?a?b。 (5)平方法:设a、b是两负实数,则a?b?a?b。 六、实数的运算

1、加法交换律a?b?b?a

2、加法结合律(a?b)?c?a?(b?c)

22c3

初一实数所有知识点总结和常考题提高难题压轴题练习(含答案解析)

(表D.0.2)---绿化(子单位)工程质量竣工验收报告表29804初一实数所有知识点总结和常考题知识点:一、实数的概念及分类1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数整数包括正整数、零、负整数。正整
推荐度:
点击下载文档文档为doc格式
90qg68w3b15uqa87qzsz8c83h0epg601680
领取福利

微信扫码领取福利

微信扫码分享