资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
晶体的生长 晶体切片成 wafer 晶圆制作
功能设计à模块设计à电路设计à版图设计à制作光罩 工艺流程 1) 表面清洗
晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化
有热氧化法生成SiO2 缓冲层, 用来减小后续中Si3N4对晶圆的应力 氧化技术
干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2
干法氧化一般见来形成, 栅极二氧化硅膜, 要求薄, 界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化一般见来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时, 膜厚与时间成正比。SiO2膜变厚时, 膜厚与时间的平方根成正比。因而, 要形成较 厚的SiO2膜, 需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时, 因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应, Si 表面向深层移动, 距离为SiO2膜厚的0.44倍。因此, 不同厚度的SiO2膜, 去除后的Si表面的深度也不同。SiO2膜为透明, 经过光干涉来估计膜的厚度。这种干涉色的周期约为200nm, 如果预告知道是几次干涉, 就能正确估计。对其它的透明薄膜, 如知道其折射率, 也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时, 看不到干涉色, 但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。
SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)
资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
面的Si的界面能级密度最低, 约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时, 氧化膜中固定电荷较多, 固定电荷密度的大小成为左右阈值的主要因素。
3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD)
NPCVD为最简单的CVD法, 使用于各种领域中。其一般装置是由(1)输送反应气体至反应炉的载气体精密装置; (2)使反应气体原料气化的反应气体气化室; (3)反应炉; (4)反应后的气体回收装置等所构成。其中中心部分为反应炉, 炉的形式可分为四个种类, 这些装置中重点为如何将反应气体均匀送入, 故需在反应气体的流动与基板位置上用心改进。当为水平时, 则基板倾斜; 当为纵型时, 着反应气体由中心吹出, 且使基板夹具回转。而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时, 在基板的上游加有混和气体使成乱流的装置。 2 低压CVD (Low Pressure CVD)
此方法是以常压CVD 为基本, 欲改进膜厚与相对阻抗值及生产所创出的方法。主要特征: (1)由于反应室内压力减少至10-1000Pa而反应气体, 载气体的平均自由行程及扩散常数变大, 因此, 基板上的膜厚及相对阻抗分布可大为改进。反应气体的消耗亦可减少; (2)反应室成扩散炉型, 温度控制最为简便, 且装置亦被简化, 结果可大幅度改进其可靠性与处理能力(因低气压下, 基板容易均匀加热), 因基可大量装荷而改进其生产性。 3 热CVD (Hot CVD)/(thermal CVD)
此方法生产性高, 梯状敷层性佳(不论多凹凸不平, 深孔中的表面亦产生反应, 及气体可到达表面而附着薄膜)等, 故用途极广。膜生成原理, 例如由挥发性金属卤化物(MX)及金属有机化合物(MR)等在高温中气相化学反应(热分解, 氢还原、 氧化、 替换反应等)在基板上形成氮化物、 氧化物、 碳化物、 硅化物、 硼化物、 高熔点金属、 金属、 半导体等薄膜方法。因只在高温下反应故用途被限制, 但由于其可用领域中, 则可得致密高纯度物质膜, 且附着强度极强, 若用心控制, 则可得安定薄膜即可轻易制得触须(短纤维)等, 故其应用范围极
资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。
广。热CVD法也可分成常压和低压。低压CVD适用于同时进行多片基片的处理, 压力一般控制在0.25-2.0Torr之间。作为栅电极的多晶硅一般利用HCVD法将SiH4或Si2H。气体热分解( 约650 oC) 淀积而成。采用选择氧化进行器件隔离时所使用的氮化硅薄膜也是用低压CVD法, 利用氨和SiH4 或Si2H6反应面生成的, 作为层间绝缘的SiO2薄膜是用SiH4和O2在400 --4500 oC的温度下形成 SiH4 + O2 –-SiO2 + 2H2
或是用Si(OC2H5)4 (TEOS: tetra – ethoxy – silanc )和O2在750 oC左右的高温下反应生成的, 后者即采用TEOS形成的SiO2膜具有台阶侧面部被覆性能好的优点。前者, 在淀积的同时导入PH3 气体, 就形成 磷硅玻璃( PSG: phosphor – silicate –glass) 再导入B2H6气体就形成BPSG(borro – phosphor –silicate –glass)膜。这两种薄膜材料, 高温下的流动性好, 广泛用来作为表面平坦性好的层间绝缘膜。 4 电浆增强 CVD (Plasma Enhanced CVD)
NPCVD 法及LPCVD 法等皆是被加热或高温的表面上产生化学反应而形成薄膜。PECVD是在常压CVD或LPCVD的反应空间中导入电浆(等离子体), 而使存在于空间中的气体被活化而能够在更低的温度下制成薄膜。激发活性物及由电浆中低速电子与气体撞击而产生。 光 CVD (Photo CVD)
PECVD 使薄膜低温化, 且又产生如A-Si般的半导体元件。但由于薄膜制作中需考虑: (1)在除去高温(HCVD)及PECVD时掺入元件中的各种缺陷(如PECVD中带电粒子撞击而造成的损伤); (2)不易制作的元件(不纯物剖面), 不希望在后面受到工程高温处理被破坏, 因此希望可于低温中被覆薄膜。PCVD是解决这此问题的方法之一。 遇热分解时, 因加热使一般分子的并进运动与内部自由度被激发(激发了分解时不需要的自由度), 相正确, 在PCVD 中, 只直接激发分解必须的内部自由度, 并提供活化物促使分解反应。故可望在低温下制成几无损伤的薄膜且因光的聚焦及扫描可直接描绘细线或蚀刻。
5 MOCVD (Metal Organic CVD) &分子磊晶成长(Molecular Beam Epitaxy)