好文档 - 专业文书写作范文服务资料分享网站

Support Vector Regression for Bus Travel Time Prediction Using Wavelet Transform

天下 分享 时间: 加入收藏 我要投稿 点赞

JournalofHarbinInstituteofTechnology(NewSeries),Vol.26,No.3,2019DOI:10.11916/j.issn.1005?9113.18025

SupportVectorRegressionforBusTravelTimePredictionUsing

WaveletTransform

YangLiu1,YanjieJi1?,KeyuChen2andXinyiQi1

(1.SchoolofTransportation,SoutheastUniversity,Nanjing210096,China;

2.GuangzhouUrbanPlanning&DesignSurveyResearchInstitute,Guangzhou510060,China)Abstract:Inordertoaccuratelypredictbustraveltime,ahybridmodelbasedoncombiningwavelettransformtechniquewithsupportvectorregression(WT?SVR)modelisemployed.Inthismodel,waveletdecompositionisusedtoextractimportantinformationofdataatdifferentlevelsandenhancestheforecastingabilityofthemodel.AfterwavelettransformdifferentcomponentsareforecastedbytheircorrespondingSVRpredictors.Thefinalpredictionresultisobtainedbythesummationofthepredictedresultsforeachcomponent.TheproposedhybridmodelisexaminedbythedataofbusrouteNo.550inNanjing,China.TheperformanceofWT?SVRmodelisevaluatedbymeanabsoluteerror(MAE),meanabsolutepercenterror(MAPE)andrelativemeansquareerror(RMSE),andalsocomparedtoregularSVRandANNmodels.TheresultsshowthatthepredictionmethodbasedonwavelettransformandSVRhasbettertrackingabilityanddynamicbehaviorthanregularSVRandANNmodels.Theforecastingperformanceisremarkablyimprovedtoobtainwithin6%MAPEfortestingsectionIand8%MAPEfortestingsectionII,whichprovesthatthesuggestedapproachisfeasibleandapplicableinbustraveltimeprediction.

Keywords:intelligenttransportation;bustraveltimeprediction;wavelettransform;supportvectorregression;hybridmodel

CLCnumber:U12   Documentcode:A    ArticleID:1005?9113(2019)03?0026?09

1 Introduction

  Bustraveltimepredictionisvitalcomponentofadvancedpublictransportationsystem(APTS)andadvancedtravelerinformationsystem(ATIS).Withtherapiddevelopmentofcommunicationandnetworktechnology,anaccurateandreal?timetraveltimeforecastisincreasinglyimportant.Forbusoperationmanagement,itcanhelpoptimizebusrouteplanning,stopsiteanddistancebetweenstationsselection,andchooseappropriateroadsectiontoimplementbusprioritytragedy,whichwillrealizebetterbuspriorityonthepremiseoflimitedtrafficsupply.Ontheotherhand,real?timeanddynamicbusarrivaltimeforecastreleasedbymobilecommunicationapplicationscanhelppassengersmakemoresuitabletravelplans,whichnotonlyreducesthelongwaitingprocess,butalsoimprovestheservicelevelofpublictransportation

andattractsmorepassengers.

Previously,variousmethodshavebeenadoptedbyresearcherstoforecastbustraveltimeusinghistoricalaveragemodel[1],timeseriesmodel[2],statisticalregressionmodel[3]andkalmanfilteralgorithms[4].However,thepredictionofbustraveltimeisverycomplexandhighlynonlinearinnatureasitdependsuponmanyinfluencefactorssuchasridership,trafficflow,weatherandtrafficsignalsinbussystem.Itisdifficultforthosepredictingmethodstoconsideralloffactors,sothepredictionquality,inpractice,isunsatisfactory.

Intherecentdecade,machinelearningmodelshavebettercapabilitytohandlenonlinearmappingproblemsthatarecomplexinnature,particularlyinthefieldoftraveltimepredictionwhereanartificialneutralnetwork(ANN)hasbeenwidelyapplied.ParkandRilettanalyzedtheperformanceofANNapplicationsinbustraveltimemodeling[5];Chien

Received2018-03-17.

SponsoredbytheProjectsofInternationalCooperationandExchangeoftheNationalNaturalScienceFoundationofChina(GrantNo.51561135003)andtheScientificResearchFoundationofGraduatedSchoolofSoutheastUniversity(GrantNo.YBJJ1842).?Correspondingauthor.E-mail:jiyanjie@seu.edu.cn.

·26·

Support Vector Regression for Bus Travel Time Prediction Using Wavelet Transform

JournalofHarbinInstituteofTechnology(NewSeries),Vol.26,No.3,2019DOI:10.11916/j.issn.1005?9113.18025SupportVectorRegressionforBusTravelTimePredictionUsingWaveletTransformYangLiu
推荐度:
点击下载文档文档为doc格式
8zxol0aqtt4ncj33s2bw8iiwn4795r018c4
领取福利

微信扫码领取福利

微信扫码分享