第一节 行星的运动
理解领悟 万有引力定律的建立过程,是从观察行星运动、描述行星运动规律开始的。人类对行星运动规律的认识,经历了从“地心说”到“日心说”,直到开普勒的行星运动定律等阶段。教材通过对托勒密、哥白尼、第谷、开普勒等科学家关于行星运动规律研究的介绍,使我们领略到前辈科学家们对自然奥秘不屈不挠探索的精神和对待科学研究一丝不苟的态度,感悟到科学的结论总是在顽强曲折的科学实践中悄悄地来临。 1. 地心说
古希腊天文学家托勒密在公元2世纪,提出了地心说宇宙体系。在这个体系里,地球是静止不动的,地球是宇宙的中心。托勒密按照月亮、水星、金星、太阳、火星、木星、土星,最后是恒星天球(原动天)的顺序,安排了后来以他的名字命名的地心说宇宙结构。他用“偏心轮”、“本轮—均轮”和“等距轮”三种基本运动80多个“轮上轮”巧妙地说明天体的各种运动,与实测数据符合得较好。虽然这只是用以计算天体角位置的一个数学方案,但因为同人们的直观经验一致,又迎合宗教教义,那以后的1400多年里一直被大家所公认。 2. 日心说
15世纪,以波兰天文学家哥白尼为代表的日心说学派则认为太阳是静止不动的,地球和其他行星都绕太阳运动。哥白尼在《天体运动论》中提出了以下基本观点:宇宙的中心是太阳,所有的行星都在绕太阳做匀速圆周运动;地球是绕太阳旋转的普通行星,月球是绕地球旋转的卫星,它绕地球做匀速圆周运动,同时还跟地球一起绕太阳运动;天穹不转动,因为地球每天自西向东自转一周,造成天体每天东升西落的现象;与日地距离相比,恒星离地都十分遥远,比日地间的距离大得多。日心说大大简化了对行星运动轨道的描述,经过与地心说的长期争论,最终被人们所接受。但日心说存在两大缺陷:一是错误地把太阳当成了宇宙的中心,二是沿用了行星在圆形轨道上做匀速圆周运动的陈旧观念。 3. 开普勒行星运动定律
德国天文学家开普勒仔细整理了丹麦天文学家第谷留下的长期观测资料,并进行了详细的分析。为了解释计算结果与第谷的观测数据间的8’差异,他摒弃了行星做匀速圆周运动的假设,提出了行星的运动轨道是椭圆的新观点。经过10多年的悉心研究,终于发现了后来以他的名字命名的行星运动定律:
① 开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
② 开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
③ 开普勒第三定律(周期定律) 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
由于开普勒把第谷的宏大数据表转化成了一个简单的和可以理解的曲线和规律的体系——开普勒三定律,且与观测资料十分吻合,所有很快得到了天文学家们的公认,而开普勒也得到了“天空的立法者”的光荣称号。 4. 对开普勒行星运动定律的理解
对于开普勒行星运动定律,我们可以从以下几方面来加以理解:
① 开普勒第一定律说明了行星的运动轨迹是椭圆,太阳在此椭圆的一个焦点上,而不
是位于椭圆的中心。不同的行星位于不同的椭圆轨道上,而不是位于同一椭圆轨道。再有。不同行星的椭圆轨道一般不在同一平面内。
② 开普勒第二定律行星运动的速率是在不断变化的。由于行星与太阳的连线在相等的时间内扫过相等的面积,说明行星在运转过程中离太阳越近速率越大,离太阳越远速率越小。也就是说,行星在近日点的速率最大,在远日点的速率最小。
③ 若用a代表椭圆轨道的半长轴,T代表公转周期,开普勒第三定律告诉我们,
a3?k, 2T比值k是一个与行星无关的常量,仅与中心天体——太阳的质量有关。
④ 开普勒三定律不仅适用于行星绕太阳的运动,也适用于卫星绕地球的运动,更一般地讲,也适用于其他天体绕某一中心天体的运动。当然,对于不同的中心天体,开普勒第三定律中的比例常数k是不同的。 5. 行星轨道按圆处理时的规律
由于多数大行星的轨道十分接近圆,所以在中学阶段的研究中可按圆处理。根据开普勒行星运动定律,行星轨道按圆处理时遵循如下规律:
① 大多数行星绕太阳运动的轨道十分接近圆,太阳处在圆心。
② 对某一行星来说,它绕太阳做圆周运动的角速度(或线速度)不变,即行星做匀速圆周运动。
③ 所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等。 6. 认识行星运动规律的曲折过程给我们的启示
人类对行星运动规律的认识过程充满着曲折与艰辛,不同时期人们的宇宙观代表着与社会大背景相适应的主流观念和意识。从地心说的直接经验开始,到日心说的转变,不是简单的参考系的变化,而是人类思想的一次重大解放,此次人类的视野超越了地球。然而,地心说和日心说都保留保留人们心目中所钟爱的完美图形——圆,这在一定程度上代表了古代人的审美观。开普勒能够最终放弃这一世世代代为人们所信仰的完美图形,而坚信第谷的精确观测数据,不仅需要严谨的科学态度与科学精神,也需要极大的勇气。 7. 认识椭圆
开普勒第一定律指出:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。那么,什么是椭圆呢?教材“做一做”栏目介绍了用图钉和细绳画椭圆的方法,铅笔在纸上画出的轨迹就是椭圆,图钉在纸上留下的痕迹叫做椭圆的焦点。可见,椭圆上某点到两个焦点的距离之和与椭圆上另一点到两个焦点的距离之和是相等的。
所以,椭圆是到两定点的距离之和等于定长的点的轨迹,该两定点就是椭圆的焦点。椭圆是轴对称图形,有两个对称轴,其中长的一条叫做长轴,短的一条叫做短轴。长轴的一半叫做半长轴。当椭圆的两个焦点重合在一起时,椭圆就成了圆。因而,圆可看作椭圆的特例。这时,椭圆的短轴与长轴相等,半长轴就等于圆的半径。 8. “科学足迹”解读
教材在“科学足迹”栏目中介绍了“人类对行星运动规律的认识”,此文值得一读。这部分内容有科学与历史、科学与艺术、物理与社会、科学发展与思想解放等等,寓意很深,包含许多教育因素。现对文中给出的科学家群体的三个主要人物哥白尼、第谷、开普勒的活动过程和思维方法作一扼要分析说明。
哥白尼:“哥白尼的眼光超越了地球……使人类来到了牛顿物理学的门前。”在这里,哥白尼的开放观点并不是孤立的历史事件,把它放在当时社会经济、文化环境中,文艺复兴带
来的思想与艺术的繁荣对哥白尼有深刻影响。一方面,艺术的繁荣使哥白尼坚信宇宙和自然是美的,而美的东西一定是简单与和谐的;另一方面,思想的繁荣解脱了束缚人们头脑的枷锁,使“哥白尼的眼光超越了地球”。
第谷:“在他以前,人们观测天体位置的误差大约是10’,第谷把这个不确定性减小到2’。他的观测结果为哥白尼的学说提供了关键性支持。”这里通过对第谷的精于“观察自然”的描述,强调了实验观察手段在科学研究中的重要作用。
开普勒:开普勒从相信“行星绕太阳做匀速圆周运动的观点”思考问题开始,到对火星轨道“七十余次尝试所得的结果都与第谷的观测数据有至少8’的角度偏差”;直至最后他“对第谷数据的精确性深信不疑……这不容忽视的8’也许正是因为行星的运动并非匀速圆周运动”,第一次大胆地对“人们长期以来视为真理的观念——天体在做‘完美的’匀速圆周运动”表示怀疑。开普勒相信真理而不迷信权威的实事求是的科学态度,是极好的教育素材。第谷和开普勒是两个风格截然不同的科学家,一个擅长观察,另一个是数学天才,但是谁的作用也不可忽略。第谷从实验观察入手,开普勒再对实验结果进行数学归纳,“把几千个数据归纳成如此简洁的几句话”,科学探索的乐趣与科学方法的魅力可见一斑。
应用链接 本节知识的应用主要涉及人们对行星运动规律的认识,以及开普勒三定律的理解和运用。
基础级 例1 木星绕太阳运动的周期为地球绕太阳运动周期的12倍。那么,木星绕太阳运动轨道的半长轴是地球绕太阳运动轨道半长轴的多少倍?
提示 行星公转半长轴的三次方跟运动周期的二次方的比值恒定。已知木星绕太阳运动的周期与地球绕太阳运动的周期的比值,根据开普勒第三定律可计算出木星绕太阳运动轨道的半长轴是地球绕太阳运动轨道半长轴的倍数。
解析 设木星、地球绕太阳运动的周期分别为T1、T2,它们椭圆轨道的半长轴分别为
3a13a2a1、a2,根据开普勒第三定律有2?2,
T1T2a1T1232?32?12?5.24。 则a2T2可见,木星绕太阳运动轨道的半长轴约为地球绕太阳运动轨道半长轴的5.24倍。 点悟 在理解开普勒第三定律时应注意,只有围绕同一天体运动的行星或卫星,它们半长轴的三次方与公转周期的二次方之比才是同一常数。木星、地球都围绕太阳沿不同的椭圆轨道运动,太阳在它们椭圆轨道的一个焦点上,遵循开普勒第三定律。
例2 天文学家观测到哈雷彗星绕太阳运转的周期是76年,彗星离太阳最近的距离是8.9×1010m,但它离太阳最远的距离不能测出。试根据开普勒定律计算这个最远距离。(太阳系的开普勒恒量k=3.354×1018m3/s2)
提示 算出哈雷彗星绕太阳运转轨道的半长轴,应用开普勒第三定律求解。 解析 设彗星离太阳的最近距离为R1,最远距离为R2,则轨道半长轴为
a?l1?l2。 2a3根据开普勒第三定律有 2?k,
T所以彗星离太阳最远的距离是 l2?38kT2?l1
?38?3.354?1018?(76?365?24?3600)2m?8.9?1010m?5.225?1012m。
点悟 本题运用椭圆轨道的几何关系得出了椭圆的半长轴。要注意数学知识和方法在解决物理问题中的应用。
例3 飞船沿半径为R的圆周绕地球运动,其周期为T。如果飞船要返回地面,可在轨道上某点A处,将速率降低到适当数值,从而使飞船沿着以地心为焦
R 点的椭圆轨道运动,椭圆和地球表面在B点相切,如图7-1所示。如果地球半R0 B 径为R0,求飞船由A点到B点所需要的时间。
提示 飞船沿椭圆轨道返回地面,由图可知,飞船由A点到B点所需要的时间刚好是沿图中整个椭圆运动周期的一半,由开普勒第三定律可以求解。 图1-1
解析 设飞船沿椭圆轨道运动的周期为T’,椭圆轨道的半长轴为
3A
R?R0,2?R?R0???3R?2?,
根据开普勒第三定律有 2?TT?2(R?R0)T?R?R0??解得 T??T??2R2R??所以,飞船由A点到B点所需要的时间为
3R?R0。 2RT?(R?R0)Tt??24RR?R0。 2R点悟 开普勒第三定律是根据行星绕太阳运动总结出来的规律,该结论对卫星绕行星的运动也是成立的。飞船绕地球做圆周 (长轴和短轴相等的特殊椭圆) 运动时,其轨道半径
R3的三次方跟周期的二次方的比值也等于常数,即2?k,且k与地球的卫星质量无关。
T例4 九大行星绕太阳运行的轨迹可粗略地认为是圆,各星球半径和轨道半径的大小如下表所示: 行星名称 星球半径(×106m) 轨道半径(×1011m) 水星 2.44 0.579 金星 6.05 1.08 地球 6.37 1.50 火星 3.40 2.28 木星 71.5 7.78 土星 60.3 14.3 天王星 海王星 冥王星 25.6 28.7 24.8 45.0 1.15 59.1 从表中所立数据可以估算出冥王星的公转周期最接近于( ) A. 4年 B. 40年 C. 140年 D. 240年 提示 从表格中查得冥王星和地球的轨道半径,应用开普勒第三定律求解。 解析 根据开普勒第三定律有
3R冥T2冥?3R地T2地,
1111从表格中查得R地?1.50?10m,R冥?59.1?10m,又T地?1年,
故冥王星的公转周期T冥?T地3R冥3R地3(59.1?1011)?1?年?247年, 3(1.50?1011)正确选项为D。
点悟 本题是一道信息题,从题目所给信息中排除无效信息,获取有效信息,这是解题的关键。本题所给条件很多,但决定冥王星公转周期的只有它的轨道半径,与行星本身的大小、形状等无关。
例5 月球环绕地球运动的半径约为地球半径的60倍,运行周期约为27天。试用开普勒定律计算出:在赤道平面内离地面多大高度,人造地球卫星可以随地球一起转动,就像停留在空中一样?(地球半径约为6.4×103km)
提示 月球和人造地球卫星都在环绕地球运动,根据开普勒第三定律,它们运行轨道半径的三次方跟圆周运动周期的二次方的比值都是相等的。
解析 设人造地球卫星和月球的轨道半径分别为R1、R2,周期分别为T1、T2,根据开
3R13R2普勒第三定律有2?2,解得
T1T2R1?R23T12T12(24?3600)23433?60R??60?6.4?10?km?4.27?10km。 地222T2T2(27?24?3600)所以,人造地球卫星离地面的高度为
H?R1?R地?4.27?104km?6.4?103km?3.63?104km。
点悟 随地球一起转动,就好像停留在天空中的卫星,通常称为同步卫星,也叫定点卫
星,它们离地面的高度是一个确定的值。关于同步卫星,我们在本章第5节中还要作进一步的研究。
例6 某行星绕太阳沿椭圆轨道运行,它的近日点A到太阳的距离为r,远日点B到太阳的距离为R。若行星经过近日点时的速度为vA,求该行星经过远日点时的速度vB的大小。
提示 应用开普勒第二定律求解。 解析 根据开普勒第二定律,行星绕太阳沿椭圆轨道运动时,它和太阳的连线在相等的时间内扫过的面积相等。如图7-2所示,分别以近日点A和远日点B为中心,取一个很短的时间△t,在该时间内扫过的面积如图中的两个曲边三角形所示。由于时间极短,可把这段时间内的运动看成匀速率运动,从而有 vB 11 rvA?t?RvB?t。
22r所以,该行星经过远日点时的速度大小为vB?vA。
R
R A vA 图1-2
B