平面向量的实际背景及基本概念
教学目标:
1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、
单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.
3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系.
学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念. 教 具:多媒体或实物投影仪,尺规 授课类型:新授课 教学思路:
一、情景设置:
如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)
结论:猫的速度再快也没用,因为方向错了. 分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.
引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向? 二、新课学习:
(一)向量的概念:我们把既有大小又有方向的量叫向量 (二)请同学阅读课本后回答:(可制作成幻灯片) 1、数量与向量有何区别? 2、如何表示向量?
3、有向线段和线段有何区别和联系?分别可以表示向量的什么? 4、长度为零的向量叫什么向量?长度为1的向量叫什么向量? 5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗? 6、有一组向量,它们的方向相同或相反,这组向量有什么关系?
7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系? (三)探究学习
1、数量与向量的区别:
数量只有大小,是一个代数量,可以进行代数运算、比较大小;
第 1 页 共 3 页
C
A B D
向量有方向,大小,双重性,不能比较大小. 2.向量的表示方法: ①用有向线段表示; ②用字母a、b
(黑体,印刷用)等表示;
③用有向线段的起点与终点字母:AB;
④向量AB的大小――长度称为向量的模,记作|AB|.
3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度. 向量与有向线段的区别:
(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;
(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.
4、零向量、单位向量概念:
①长度为0的向量叫零向量,记作0. 0的方向是任意的. 注意0与0的含义与书写区别.
②长度为1个单位长度的向量,叫单位向量. 说明:零向量、单位向量的定义都只是限制了大小. 5、平行向量定义:
①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.
说明:(1)综合①、②才是平行向量的完整定义;(2)向量a、b、c平行,记作a∥b∥c.
6、相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;
(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有..
向线段的起点无关. ........
7、共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的......起点无关). .....
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系. (四)理解和巩固:
a
A(起点)
B
(终点)
第 2 页 共 3 页
例1 书本86页例1.
例2判断:
(1)平行向量是否一定方向相同?(不一定) (2)不相等的向量是否一定不平行?(不一定) (3)与零向量相等的向量必定是什么向量?(零向量) (4)与任意向量都平行的向量是什么向量?(零向量)
(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量) (6)两个非零向量相等的当且仅当什么?(长度相等且方向相同) (7)共线向量一定在同一直线上吗?(不一定) 例3下列命题正确的是( )
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量 D.有相同起点的两个非零向量不平行
解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以应选C. 例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量OA、OB、OC相等的向量.
变式一:与向量长度相等的向量有多少个?(11个)
变式二:是否存在与向量长度相等、方向相反的向量?(存在) 变式三:与向量共线的向量有哪些?(CB,DO,FE) 三、小结 : 四、课后作业:
第 3 页 共 3 页