当???y?2ln?时yFY(y)?P{Y?y}?P{2lnX?y}?P{lnX2?y}?P{X2?ey}?P{X?ey}??e210?dx
yy???y?2ln??1212?e?(e)?对FY(y)求关于y的导数,得到fY(y)??? 2?
?02ln??y???(2)
当y?1或 y?-1时,FY(y)?P{Y?y}?P{cosX?y}?P{?}?0 当?1?y?1时,FY(y)?P{Y?y}?P{cosX?y}?P{X?arccosy}??对FY(y)求关于y的导数,得到
?1arccosy?dx
1?1?1?y?1??(arccosy)??fY(y)??? ?1?y2
?0其它?(3)当y?1或 y?0时FY(y)?P{Y?y}?P{sinX?y}?P{?}?0
当0?y?1时,
FY(y)?P{Y?y}?P{sinX?y}?P{0?X?arcsiny}?P{??arcsiny?X??}??arcsiny10?dx???1??arcsiny?dx
对FY(y)求关于y的导数,得到
12?10?y?1??arcsiny?(??arcsiny)???fY(y)??? ?1?y2 ?0其它?
word文档 可自由复制编辑
第三章 随机向量
3.1 P{1 Y X 2 0 1 2 3 128ccc345222=3 53 ccc3453122= 50 3.4(1)a= 1 9(2) 5 12(3) P{(X,Y)?D}??dy?1?y1111(6?x?y)dx??[(6?y)x?x2]|dy 0009902111211111188 ??(y?6y?5)dy?(y3?3y2?5y)|???90229620932711?y3.5解:(1) F(x,y)??(2) y0?x0yx2e?(2u?v)dudv??e?vdv?2e?2udu?(?e?v|0)(?e?2u|0)?(1?e?y)(1?e?2x)00yxword文档 可自由复制编辑 P(Y?X)????2e0??2xx0??02e?(2x?y)dxdy??2e0??2xxdx?edy??2e?2x(?e?y|0)dx00x?v?2?3x?21(1?e)dx??(2e?2x?2e?3x)dx?(?e?2x|?)?e|?1?? 000333?x?3.6解:P(x2?y2?a2)?2?a1r?d?dr 22222????00?(1?x?y)?(1?r)x2?y2?a2??d??02?a0a11111a22d(1?r)???2??|?1?1?a2?1?a2 ?(1?r2)2?2(1?r2)0 3.7参见课本后面P227的答案 13.8 fX(x)??0323y31xf(x,y)dy??xydy?x|? 0223021fy(y)??f(x,y)dx??02203232122xydx?yx|?3y2 2220?x0?x?2?3y20?y?1?,fX(x)??2 fY(y)?? 其它?0??0,其它3.9解:X的边缘概率密度函数fX(x)为: ①当x?1或x?0时,f(x,y)?0, 12111fY(y)??4.8y(2?x)dx?4.8y[2x?x]|?4.8y[1?2y?y2]yy2221fX(x)?0y?1或y?0 x0?y?1fX(x)??4.8y(2?x)dy?2.4y2(2?x)|?2.4x2(2?x)00x②当0?x?1时,fX(x)??x04.8y(2?x)dy?2.4y2(2?x)|?2.4x2(2?x) 0xword文档 可自由复制编辑 Y的边缘概率密度函数fY(y)为: ① 当y?1或y?0时,f(x,y)?0,fY(y)?0 121112② 当0?y?1时,fY(y)??4.8y(2?x)dx?4.8y[2x?x]|?4.8y[1?2y?y] yy2221?2.4y(3?4y?y2) 3.10 (1)参见课本后面P227的答案 x?x1-x)0?x?1??x26dy0?x?1?6((2)fX(x)?? =?0其它其它???0?y6dx0?y?1?6(y-y)0?y?1??fY(y)???y=? 其它其它???0?03.11参见课本后面P228的答案 3.12参见课本后面P228的答案 3.13(1) 0?x?1?220?x?1?22xy(x?)dy??0?2x?x fX(x)????33??其它其它?0?00?y?2?1y0?y?2?12xy?(x?)dx?? fY(y)???0=?36 3??其它其它?0?0对于0?y?2时,fY(y)?0, 2?6x+2xy?2xy0?x?1?0?x?1?x?32?y?f(x,y)????1y ??所以fX|Y(x|y)? ?fY(y)?36??0?其它其它?0??word文档 可自由复制编辑 对于0?x?1时,fX(x)?0 ?2xy0?y?2?3x?y0?y?2?6x?2?x?3?f(x,y)??2x??2?所以fY|X(y|x)? ?fX(x)?2x?3??0?其它其它??0? P{Y?111|X?}??fY|X(y|)dy??222120120113??y?y13?722dy??2dy? 015406??223.14 X Y 1 3 Y的边缘分布 0 0.15 0.05 0.2 2 0.25 0.18 0.43 5 0.35 0.02 0.37 X的边缘分布 0.75 0.25 1 由表格可知 P{X=1;Y=2}=0.25≠P{X=1}P{Y=2}=0.3225 故P{X?x;Y?y}?P{X?x}P{Y?y} iiii所以X与Y不独立 3.15 X Y 1 1 2 3 X的边缘分布 1 61 31 2ii1 9a 1 18b 1 31+a+b 32 Y的边缘分布 a+1 9ib+1 18i1 由独立的条件P{X?x;Y?y}?P{X?x}P{Y?y}则 word文档 可自由复制编辑