好文档 - 专业文书写作范文服务资料分享网站

高数考研习题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

=secxtanx?

3sec?xdx?23(secx?1)secxdx?secxtanx?ln|secx?tanx|?sec??xdx

11secxtanx?ln|secx?tanx|?c 223.

(lnx)3?x2dx

(lnx)3113(lnx)233?x2dx???(lnx)dx??x(lnx)??x2dx

(lnx)33(lnx)26lnx(lnx)33(lnx)26lnx6?????2dx??????2dx

xxxxxxx(lnx)33(lnx)26lnx6??????c

xxxx解.

4.

?cos(lnx)dx

?cos(lnx)dx?xcos(lnx)??sin(lnx)dx?x[cos(lnx)?sin(lnx)]??cos(lnx)dx

解.

x[cos(lnx)?sin(lnx)]?c 2xxxcos4xcos42dx?12dx??1xdsin?2x??1xsin?2x?1sin?2xdx

5. ?8?3x8?2828?2sin3x3xsincos2211xx1x1x?2x ??xsin??sin?2d??xsin?2?cot?c 824228242 ?

?cos(lnx)dx?六. 求下列不定积分:

1.

?xln(x?1?x2)dx 22(1?x)xln(x?1?x2)112dx?ln(x?1?x)d(1?x2)22?1?x211111ln(x?1?x2)??dx 22?221?x21?x1?x

解.

? =

ln(x?1?x2)1112???sectdt 令x?tant 22?2(1?x)21?tantsectln(x?1?x2)1cost =?dt 22?2(1?x)21?2sintln(x?1?x2)1d2sint = ?22?2(1?x)221?2sintln(x?1?x2)11?2sint =?ln?c

2(1?x2)421?2sintln(x?1?x2)11?x2?2x =?ln?c 222(1?x)421?x?2x2.

?xarctanx1?x2dx

解.

?xarctanx1?x2dx??arctanxd1?x?1?xarctanx??11?x2221?x2dx

1?x2 =

1?x2arctanx??dx?1?x2arctanx?ln(x?1?x2)?c

3.

arctanex?e2xdx

arctanex11?2x1?2xexx?2xx?e2xdx??2?arctanede??2earctane?2?e1?e2xdx 1?2x1e?x1?2x11xx??earctane??dx??earctane?dx 2xx2x?221?e22e(1?e)解.

1?2x11ex1?2xxx?x??earctane??(x?)dx??(earctane?e?arctanx)?c 2x22e1?e2七. 设

?xln(1?x2)?3x?0f(x)??2 , 求?f(x)dx.

?xx?0?(x?2x?3)e?(xln(1?x2)?3)dx??f(x)dx??

2?x(x?2x?3)edx???解.

?

12?122xln(1?x)?[x?ln(1?x2)]?3x?cx?0? ??22x?02?x??(x?4x?1)e?c?1考虑连续性, 所以

c =-1+ c1, c1 = 1 + c

?12?122xln(1?x)?[x?ln(1?x2)]?3x?cx?0?f(x)dx??2 2x?02?x??(x?4x?1)e?1?c?f'(ex)?asinx?bcosx, (a, b为不同时为零的常数), 求f(x).

八. 设

解. 令t

?ex,x?lnt, f'(t)?asin(lnt)?bcos(lnt), 所以

f(x)??[asin(lnx)?bcos(lnx)]dx

=

x[(a?b)sin(lnx)?(b?a)cos(lnx)]?c 2九. 求下列不定积分: 1.

x3?2?3x(2x?3)dx

22解.

3x?3xx?3xx?3x2?3(2x?3)dx??3d(x?3)?ln3?c

22.

?(3x2?2x?5)(3x?1)dx

32332解.

12(3x?2x?5)(3x?1)dx?(3x2?2x?5)2d(3x2?2x?5) ??21?(3x2?2x?5)2?c 55

3.

?ln(x?1?x2)1?x2dx

12ln(x?x2?1)?c 2解.

?ln(x?1?x2)1?x2dx??ln(x?x2?1)dln(x?x2?1)?

4.

?(1?xxdx2?x?1)ln(1?x?1)xdx222解.

?(1?x?x2?1)ln(1?x2?1)??dln(1?x2?1)ln(1?x2?1)?ln|ln(1?x2?1)|?c

十. 求下列不定积分: 1.

xarctanx?(1?x2)dx

xarctanx1arctanx122?1dx?d(1?x)??arctanxd(1?x) 22?(1?x2)2??2(1?x)2??1arctanx111arctanx11?darctanx???dx

21?x22?1?x221?x22?(1?x2)2解.

令x?tant?1arctanx11arctanx11?cos2t2?costdt????dt

21?x22?21?x2221arctanx111aextanx11???t?sin2t?c???arctanx?sintcost?c

21?x24821?x2441aextanx11x???arctanx??c 2221?x441?xxdx 1?xx?t,1?x则x?tan2t

2.

?arcsin解. 令arcsin

?arcsinxdx??tdtan2t?ttan2t??tan2tdt?ttan2t?tant?t?c 1?xxxx?x?arcsin?c?(1?x)arcsin?x?c 1?x1?x1?x

?xarcsin3.

arcsinx1?x2?x2?1?x2dx解.

arcsinx1?x2?x2?1?x2dx令x?sintt1?sin2t2?sin2t?costcostdt??t(csct?1)dt

1???tcottdt??tdt??tcott??cottdt?t2?c

21??tcott?ln|sint|?t2?c

21?x21??arcsinx?ln|x|?(arcsinx)2?c

x2

4.

arctanx?x2(1?x2)dx

arctanx?x2(1?x2)dx令x?tantt22sectdt?t(csct?1)dt ?tan2tsec2t?解.

11??tcsc2tdt??tdt???tdcott?t2??tcott??cotdt?t2

22

1arctanxx1??tcott?ln|sint|?t2?c???ln||?(arctanx)2?c

2x21?x2

arctanx1x212???ln?(arctanx)?c 2x21?x2十一. 求下列不定积分: 1.

32x4?xdx ?32332x4?xdx令x?2sint8sint2cost2costdt?32sintcostdt ???解.

?32?(1?cos2t)cos2tdtdcost??41??(4?x2)2?(4?x2)2?c

35353232cos3t?cos5t?c 35

2.

??x2?a2x

解.

x2?a2令x?asectxatant1?cos2t?asectasecttantdt?a?cos2tdt

a?atant?at?c?x2?a2?aarccos?c

x2x3.

?ex(1?ex)1?edx

t(1?t)dt1?t1?sinu?dt令t?sinu?1?t2t?1?t2?cosucosudu

解.

?ex(1?ex)1?e2xdx令ex?t

?u?cosu?c?arcsinex?1?e2x?c

xdx (a > 0)

2a?x4.

?x解.

xu424xdx8asin 令u?x令u?2asint2du?2a?x?tdt ?2a?u22(1?cos2t)2dt?2a2?(1?2cos2t?cos22t)dt =8a?41?cos4ta422dt?3at?2asin2t?sin4t?c =2at?2asin2t?2a?24222 =3a =3a2t?4a2sintcost?a2sintcost(1?2sin2t)?c

2t?3a2sintcost?2a2sin3tcost?c arcsinxx2a?xx?3a2?2a22a2a2a2ax3a?x?2a2x(2a?x)?c

=3a2x2a?x?c

2a2a =3a2arcsin十二. 求下列不定积分: 1.

?sinxdx1?cosx

解.

?sinxdx1?cosx??sinxdxsin2x1?cosx???d(1?cosx)sin2x1?cosx??2?d1?cosx

1?cos2x

令1?cosx?u?2?dudu??2?u2(2?u2)

1?(u2?1)2

???(?11112?u?)du??ln||?c 22u22u2?u2?u1?122ln|2?1?cosx2?1?cosx|?c

1?cosx2.

2?sinx?2?cosxdx

高数考研习题及答案

=secxtanx?3sec?xdx?23(secx?1)secxdx?secxtanx?ln|secx?tanx|?sec??xdx11secxtanx?ln|secx?tanx|?c223.(lnx)3?x2dx(lnx)3113(lnx)233?x2dx???(lnx)dx??x(lnx)??x2dx
推荐度:
点击下载文档文档为doc格式
8yk2r8gttu0a6ri16ozy38gut0xt46013pk
领取福利

微信扫码领取福利

微信扫码分享