第一章 函数·极限·连续
一. 填空题 1. 已知解.
f(x)?sinx,f[?(x)]?1?x2,则?(x)?__________, 定义域为___________.
f[?(x)]?sin?(x)?1?x2, ?(x)?arcsin(1?x2)
?1?1?x2?1, 0?x2?2,|x|?2
axa?1?x?t2.设lim??tedt, 则a = ________. ????x???x?a解. 可得ea??tetdt=(tet?et)??a?aea?ea??, 所以 a = 2.
3.
12n??lim?2?2???2?=________. n??n?n?1n?n?2n?n?n??12n ????n2?n?nn2?n?nn2?n?n12n12n <2<2 ?2???2?2???2n?n?1n?n?2n?n?nn?n?1n?n?1n?n?11?2???n1?2???n12n所以 << ????n2?n?nn2?n?1n2?n?2n2?n?nn2?n?1n(1?n)1?2???n12, (n??) ??22n?n?nn?n?n2n(1?n)1?2???n12, (n??) ??n2?n?1n2?n?12解. 所以
12n??1lim?2?2???2?=n??n?n?1n?n?2n?n?n?2?|x|?1?1, 则f[f(x)] _______. f(x)??
|x|?1?0
4. 已知函数
解. f[f(x)] = 1. 5.
lim(n?3n?n?n)=_______.
n??解.
lim(n?3n?n?n)?limn??(n?3n?n?n)(n?3n?n?n)n?3n?n?nn??
=limn?3n?n?nn?3n?n?nn???2
6. 设当x?0时,f(x)?ex?1?ax为x的3阶无穷小, 则a?_____,b?______.
1?bxex?解.
k?limx?01?axxxxx1?bx?lime?bxe?1?ax?lime?bxe?1?ax
x?0x?0x3x3(1?bx)x3
ex?bex?bxex?a?limx?03x2ex?2bex?bxex?limx?06x2x?0 ( 1 )
( 2 )
由( 1 ): 由( 2 ):
lim(ex?bex?bxex?a)?1?b?a?0 lim(ex?2bex?bxex)?1?2b?0
x?0
11b??,a?22
7.
1??1limcotx???=______. x?0?sinxx?解.
limcosxx?sinxx?sinx1?cosxsinx1??lim?lim?lim? 32x?0sinxx?0x?0x?0xsinxx3x6x6n1990?A(? 0 ? ?), 则A = ______, k = _______. 8. 已知limkn??n?(n?1)k解.
n1990n1990limk?limk?1?A n??n?(n?1)kn??kn??所以 k-1=1990, k = 1991;
二. 选择题
111 ?A,A??kk19911. 设f(x)和?(x)在(-?, +?)内有定义, f(x)为连续函数, 且f(x) ? 0, ?(x)有间断点, 则 (a) ?[f(x)]必有间断点 (b) [ ?(x)]2必有间断点 (c) f [?(x)]必有间断点 (d)
?(x)必有间断点 f(x)?1|x|?1解. (a) 反例 ?(x)?? , f(x) = 1, 则?[f(x)]=1
|x|?10?(b) 反例
?(x)??|x|?1?1 , [ ?(x)]2 = 1 ??1|x|?1?1|x|?1(c) 反例 ?(x)?? , f(x) = 1, 则f [?(x)]=1
|x|?10?(d) 反设 g(x) =
?(x)在(-?, +?)内连续, 则?(x) = g(x)f(x) 在(-?, +?)内连续, 矛盾. 所以(d)是答案. f(x)2. 设函数
f(x)?x?tanx?esinx, 则f(x)是
(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数
解. (b)是答案. 3. 函数
f(x)?|x|sin(x?2)x(x?1)(x?2)2在下列哪个区间内有界
(a) (-1, 0) (b) (0, 1) (c) (1, 2) (d) (2, 3) 解. limx?1f(x)??,limf(x)??,f(0?)?x?0sin2sin2 ,f(0?)??44 所以在(-1, 0)中有界, (a) 为答案.
x2?1x?1时,函数e的极限 4. 当x?1x?1(a) 等于2 (b) 等于0 (c) 为? (d) 不存在, 但不为?
11???x2?1x?1解. lime?lim(x?1)ex?1??x?1x?1x?1?01x?1?0. (d)为答案.
x?1?05. 极限lim?352n?1?的值是 ????2222?n??12?222?3n?(n?1)???(a) 0 (b) 1 (c) 2 (d) 不存在 解.
?352n?1? lim?2????2222?n??1?222?3n?(n?1)??=lim??11?1111?1?????????lim1??1, 所以(b)为答案. 22222?2?n??12n???223n(n?1)(n?1)????(x?1)95(ax?1)5?8, 则a的值为 6. 设lim250x??(x?1)(a) 1 (b) 2 (c)
58 (d) 均不对
解. 8 =
(x?1)95(ax?1)5(x?1)95/x95(ax?1)5/x5lim=limx??x??(x2?1)50(x2?1)50/x100(1?1/x)95(a?1/x)555a?8, 所以(c)为答案. ?a =lim, 250x??(1?1/x)7. 设lim(x?1)(x?2)(x?3)(x?4)(x?5)???x??(3x?2), 则?, ?的数值为
(a) ? = 1, ? = 解. (c)为答案. 8. 设
111 (b) ? = 5, ? = (c) ? = 5, ? = 5333 (d) 均不对
f(x)?2x?3x?2, 则当x?0时
(a) f(x)是x的等价无穷小 (b) f(x)是x的同阶但非等价无穷小 (c) f(x)比x较低价无穷小 (d) f(x)比x较高价无穷小
解.
2x?3x?22xln2?3xln3lim?ln2?ln3, 所以(b)为答案. =limx?0x?0x1