好文档 - 专业文书写作范文服务资料分享网站

高数考研习题及答案

天下 分享 时间: 加入收藏 我要投稿 点赞

第一章 函数·极限·连续

一. 填空题 1. 已知解.

f(x)?sinx,f[?(x)]?1?x2,则?(x)?__________, 定义域为___________.

f[?(x)]?sin?(x)?1?x2, ?(x)?arcsin(1?x2)

?1?1?x2?1, 0?x2?2,|x|?2

axa?1?x?t2.设lim??tedt, 则a = ________. ????x???x?a解. 可得ea??tetdt=(tet?et)??a?aea?ea??, 所以 a = 2.

3.

12n??lim?2?2???2?=________. n??n?n?1n?n?2n?n?n??12n ????n2?n?nn2?n?nn2?n?n12n12n <2<2 ?2???2?2???2n?n?1n?n?2n?n?nn?n?1n?n?1n?n?11?2???n1?2???n12n所以 << ????n2?n?nn2?n?1n2?n?2n2?n?nn2?n?1n(1?n)1?2???n12, (n??) ??22n?n?nn?n?n2n(1?n)1?2???n12, (n??) ??n2?n?1n2?n?12解. 所以

12n??1lim?2?2???2?=n??n?n?1n?n?2n?n?n?2?|x|?1?1, 则f[f(x)] _______. f(x)??

|x|?1?0

4. 已知函数

解. f[f(x)] = 1. 5.

lim(n?3n?n?n)=_______.

n??解.

lim(n?3n?n?n)?limn??(n?3n?n?n)(n?3n?n?n)n?3n?n?nn??

=limn?3n?n?nn?3n?n?nn???2

6. 设当x?0时,f(x)?ex?1?ax为x的3阶无穷小, 则a?_____,b?______.

1?bxex?解.

k?limx?01?axxxxx1?bx?lime?bxe?1?ax?lime?bxe?1?ax

x?0x?0x3x3(1?bx)x3

ex?bex?bxex?a?limx?03x2ex?2bex?bxex?limx?06x2x?0 ( 1 )

( 2 )

由( 1 ): 由( 2 ):

lim(ex?bex?bxex?a)?1?b?a?0 lim(ex?2bex?bxex)?1?2b?0

x?0

11b??,a?22

7.

1??1limcotx???=______. x?0?sinxx?解.

limcosxx?sinxx?sinx1?cosxsinx1??lim?lim?lim? 32x?0sinxx?0x?0x?0xsinxx3x6x6n1990?A(? 0 ? ?), 则A = ______, k = _______. 8. 已知limkn??n?(n?1)k解.

n1990n1990limk?limk?1?A n??n?(n?1)kn??kn??所以 k-1=1990, k = 1991;

二. 选择题

111 ?A,A??kk19911. 设f(x)和?(x)在(-?, +?)内有定义, f(x)为连续函数, 且f(x) ? 0, ?(x)有间断点, 则 (a) ?[f(x)]必有间断点 (b) [ ?(x)]2必有间断点 (c) f [?(x)]必有间断点 (d)

?(x)必有间断点 f(x)?1|x|?1解. (a) 反例 ?(x)?? , f(x) = 1, 则?[f(x)]=1

|x|?10?(b) 反例

?(x)??|x|?1?1 , [ ?(x)]2 = 1 ??1|x|?1?1|x|?1(c) 反例 ?(x)?? , f(x) = 1, 则f [?(x)]=1

|x|?10?(d) 反设 g(x) =

?(x)在(-?, +?)内连续, 则?(x) = g(x)f(x) 在(-?, +?)内连续, 矛盾. 所以(d)是答案. f(x)2. 设函数

f(x)?x?tanx?esinx, 则f(x)是

(a) 偶函数 (b) 无界函数 (c) 周期函数 (d) 单调函数

解. (b)是答案. 3. 函数

f(x)?|x|sin(x?2)x(x?1)(x?2)2在下列哪个区间内有界

(a) (-1, 0) (b) (0, 1) (c) (1, 2) (d) (2, 3) 解. limx?1f(x)??,limf(x)??,f(0?)?x?0sin2sin2 ,f(0?)??44 所以在(-1, 0)中有界, (a) 为答案.

x2?1x?1时,函数e的极限 4. 当x?1x?1(a) 等于2 (b) 等于0 (c) 为? (d) 不存在, 但不为?

11???x2?1x?1解. lime?lim(x?1)ex?1??x?1x?1x?1?01x?1?0. (d)为答案.

x?1?05. 极限lim?352n?1?的值是 ????2222?n??12?222?3n?(n?1)???(a) 0 (b) 1 (c) 2 (d) 不存在 解.

?352n?1? lim?2????2222?n??1?222?3n?(n?1)??=lim??11?1111?1?????????lim1??1, 所以(b)为答案. 22222?2?n??12n???223n(n?1)(n?1)????(x?1)95(ax?1)5?8, 则a的值为 6. 设lim250x??(x?1)(a) 1 (b) 2 (c)

58 (d) 均不对

解. 8 =

(x?1)95(ax?1)5(x?1)95/x95(ax?1)5/x5lim=limx??x??(x2?1)50(x2?1)50/x100(1?1/x)95(a?1/x)555a?8, 所以(c)为答案. ?a =lim, 250x??(1?1/x)7. 设lim(x?1)(x?2)(x?3)(x?4)(x?5)???x??(3x?2), 则?, ?的数值为

(a) ? = 1, ? = 解. (c)为答案. 8. 设

111 (b) ? = 5, ? = (c) ? = 5, ? = 5333 (d) 均不对

f(x)?2x?3x?2, 则当x?0时

(a) f(x)是x的等价无穷小 (b) f(x)是x的同阶但非等价无穷小 (c) f(x)比x较低价无穷小 (d) f(x)比x较高价无穷小

解.

2x?3x?22xln2?3xln3lim?ln2?ln3, 所以(b)为答案. =limx?0x?0x1

8yk2r8gttu0a6ri16ozy38gut0xt46013pk
领取福利

微信扫码领取福利

微信扫码分享