【题1】(2016?成都第28题)
如图,在平面直角坐标系xOy中,抛物线y=a(x+1)﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点
2
H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.
(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.
【题2】(2016?泰安第28题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B. (1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
【题2】(2016?东营第25题)
【题3】(2016?扬州第28题)如图1,二次函数y=ax2+bx的图像过点A(-1,3),顶点B的横坐标为1.
(1)求这个二次函数的表达式;
(2)点P在该二次函数的图像上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;
(3)如图3,一次函数y=kx(k>0)的图像与该二次函数的图像交于O、C两点,点
T为该二次函数图像上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,
且M在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N。若在点TON2运动的过程中,为常数,试确定k的值。
OM 参考答案:(1)y?x2?2x
4)或P(3?1,2) (2)P(5?1, (3)k=
12
Ayyy31AMNCTx图3-1OB图1xOB图2(备用图)xO