成都市2016年高中阶段教育学校统一招生考试
(含成都市初三毕业会考)
数 学
注意事项:
1. 全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间120分钟.
2. 在作答前,考生务必将自己的姓名、准考证号涂写在试卷和答题卡规定的地方,考试结束,监考人员将试卷和答题卡一并收回。
3.选择题部分必须使用2B铅笔填涂;非选择题部分必须使用0.5毫米黑色墨水签字笔书写,字体工整、笔迹清楚。
4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
5.保持答题卡清洁,不得折叠、污染、破损等。
A卷(共100分)
第Ⅰ卷(选择题,共30分)
一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)
1. 在-3,-1,1,3四个数中,比-2小的数是( )
(A) -3 (B) -1 (C) 1 (D) 3
2.如图所示的几何体是由5个大小相同的小立方块搭成,它的俯视图是( )
3. 成都地铁自开通以来,发展速度不断加快,现已成为成都市民主要出行方式之一,今年4月29日成都地铁安全运输乘客约181万乘次,又一次刷新客流记录,这也是今年以来第四次客流记录的刷新,用科学记数法表示181万为( )
(A) 18.1×105 (B) 1.81×106 (C) 1.81×107 (D) 181×104
1
4. 计算?x3y的结果是( )
(A) ?xy (B) xy (C) ?xy (D) xy 5. 如图,l1∥l2,∠1=56°,则∠2的度数为( )
(A) 34° (B) 56° (C) 124° (D) 146°
6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) (A)(-2,-3) (B)(2,-3) (C)(-3,2) (D)(3, -2) 7. 分式方程
563262??22x?1的解为( ) x?3(A) x=-2 (B) x=-3 (C) x=2 (D) x=3
8.学校准备从甲、乙、丙、丁四个科创小组中选出一组代表学校参加青少年科技创新大赛,各组的平时成绩的平均数x(单位:分)及方差s如下表所示:
甲 7 1 乙 8 1.2 丙 8 1 丁 7 1.8 2x s2 如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是( ) (A) 甲 (B) 乙 (C) 丙 (D) 丁
9. 二次函数y?2x?3的图象是一条抛物线,下列关于该抛物线的说法,正确的是( ) (A) 抛物线开口向下 (B) 抛物线经过点(2,3) (C) 抛物线的对称轴是直线x=1 (D) 抛物线与x轴有两个交点
10.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为( )
2︵
1010? (B) ? 3955? (C) ? (D)
918 (A)
第Ⅱ卷(非选择题,共70分)
二、填空题 (本大题共4个小题,每小题4分,共16分,答案写在答题卡上)
11. 已知|a+2|=0,则a = ______.
12. 如图,△ABC≌△A'B'C',其中∠A=36°,∠C′=24°,则∠B=___°.
2
13. 已知P1(x1,y1),P2(x2 ,y2)两点都在反比例函数y?且x1< x2 < 0,则y1 ____ y2.(填“>”或“<”)
2的图象上, x14. 如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O, AE垂直平分OB于点E,则AD的长为_________.
三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)
15. (本小题满分12分,每题6分)
(1)计算:??2??16?2sin30??2016???
o30
(2)已知关于x的方程3x?2x?m?0没有实数根,求实数m的取值范围.
21?x2?2x?1?16.(本小题满分6分) 化简:?x??? 2xx?x??
17.(本小题满分8分)
在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m. 根据测量数据,求旗杆CD的高度。(参考数据:
sin32??0.53,cos32??0.85,tan32??0.62)
3
18.(本小题满分8分)
在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正
整数后,背面向上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张。
(1)请用画树状图或列表的方法表示两次抽取卡片的所有可能出现的结果;(卡片用A,B,C,D表示)
(2)我们知道,满足的a?b?c三个正整数a,b,c称为勾股数,求抽到的两张卡片上的数都是勾股数的概率。
19. (本小题满分10分)
4
222 如图,在平面直角坐标系xoy中,正比例函数y?kx的图象与反比例函数直线y?都经过点A(2,-2).
(1)分别求这两个函数的表达式;
m的图象x(2)将直线OA向上平移3个单位长度后与y轴相交于点B,与反比例函数的图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积。
20.(本小题满分1 0分)
如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C, 交AC于点D,交AC的延长线于点E,连接BD,BE. (1)求证:△ABD∽△AEB;
(2)当
AB4?时,求tanE; BC3(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F.若AF=2,求⊙C的半径。
5