10. 2 荷载
10.2.1 作用在地铁结构上的荷载,如地层压力、水压力、地面各种荷载及施工荷载等,有许多不确定因素,所以必须考虑每个施工阶段的变化及使用过程中荷载的变动,选择使结构整体或构件的应力为最大、工作状态为最不利的荷载组合及加载状态来进行设计。
下面是关于表10.2.1中荷载的说明:
1 隧道上部和破坏棱体范围的设施及建筑物压力应考虑现状及以后的变化,凡规划明确的,应依其荷载设计;凡不明确的,应在设计要求中规定;
2 混凝土收缩及徐变影响:超静定或截面厚度大的结构应考虑混凝土收缩的影响.《铁道隧道设计规范》中规定,混凝土收缩的影响可用降低温度的方法来计算。对于整体浇注的混凝土结构相当于降低温度20℃;对于整体浇注的钢筋混凝土结构相当于降低温度15℃;对于分段浇注的混凝土或钢筋混凝土结构相当于降低温度10℃;对于装配式钢筋混凝土结构相当于降低温度5一lO℃;
混凝土收缩影响是一种长期、缓慢的过程,而混凝土又是一种具有徐变性能的塑性材料。因此,由于时间效应必然引起应力松弛,从而限制或抵消了在混凝土构件中产生的部分收缩应力。为了考虑此种影响,国内外的通常做法是,当把混凝土构件视为弹性体时,将材料的弹性模量或算得的收缩应力予以折减,但折减多少尚无定论。一般将弹性模量乘以0.45的系数;
3 地面车辆荷载及其冲力;一般可简化为与结构埋探有关的均布荷载,但覆土较浅时应按实际情况计算。在道路下方的浅埋暗挖隧道,地面车辆荷载可按lOkPa的均布荷载取值,并不计动力作用的影响;
4 温度影响:通常认为,外露的超静定结构及覆土小于lm或位于严寒地区受外界气温影响较大的洞口段的隧道结构应考虑温度影响,但通过近年来对营运期间的
一些明挖施工地铁车站的观测发现,即使具备2~3m的覆土,由于季节温度变化引起的伸缩缝或诱导缝宽度的变化也是明显的。因此,当明挖地铁结构在较长的距离内不设变形缝时,应充分研究温度变化
对其纵向应力造成的影响。地铁结构构件因温度变化面引起的内力,应根据当地温度情况及施工条件所确定的温度变化值通过计算确定。为了考虑徐变的影响,当按弹性体计算构件的温度应力时,可将混凝土的弹性模量乘以0.7的系数;
必须重视温度变化对沉管隧道的影响。沉管隧道建成后,管节外侧墙面的温度基本上与周围土体一致,而水下土体的温度变化很小,可视为恒温。管节内部的温度由于隧道通风等原因则有较大变化,从而使沉管内外壁面温度不同而产生较大的温度梯度。
设计时应注重考察结构内外温差在横断面产生的应力,它可能是控制结构配筋的主要因素;另外,温度变化产生的纵向应力和变形,还是选择沉管隧道接头形式的重要依据之—;
5 沉管隧道应考虑沉船、抛锚或河床疏浚以及危险品在隧道内爆炸时产生的冲击力等灾害性荷载的作用。这些荷载的大小与船型、吨位、装载情况、沉没方式和覆土厚度等因素有关。广州黄沙至芳村珠江水下隧道处于珠江主航道上,远期规划通航5000t货轮,沉船及抛锚荷蓑取50kN/m2 ;日本东京港沉管隧道按东京港通航7×104 t吨位的船只考虑,沉船荷载取130kN/m2 ,抛锚荷载取340kN集中力。
当沉管隧道不禁止运送危险品的汽车通过时,要考虑运输危险品的大型罐车:在隧道内发生焊炸的可能性。珠江水下隧道和东京港沉管隧道均按单孔内发生爆炸考虑,爆炸荷载取
100kN/m2 ;
6 其他未加说明的部分,可按本节条文或参用国家有关规范,依实际情况取值。
10.2.2 地层压力是地下结构承受的主要荷载。由于影响地层压力分布、大小和性质的因素很多,应根据隧道的具体条件,结合已有的试验、测试和研究资料慎重确定。一般情况,石质隧道可根据围岩分级依工程类比确定围岩压力,土质隧道可按下述通用方法计算土压力: l 竖向压力;填土隧道及浅埋暗挖隧道一般按计算截面以上全部土柱重量考虑;深埋暗挖隧道按泰沙基公式、普罗托季雅柯诺夫公式或其他经验公式计算;
2 水平压力:根据结构受力过程中墙体位移与地层间的相互关系,分别按主动土压力、静止土压力或被动土压力理论计算;在粘性土中应考虑粘聚力影响。
计算土层的侧压力时,一般有两种方法,一种是将土压力与水压力分开计算,另一种是将水压力作为土压力的一部分进行计算,即所谓水土合算。两种方法的适用条件详见10.2.3条说明。
10.2.3 水压力的确定应注意以下问题;
1 作用在地下结构上的水压力,原则上应采用孔隙水压力,但孔隙水压力的确定比较困难,从实用和偏于安全考虑,设计水压力一般都按静水压力计算,
2 在评价地下水位对地下结构的作用时,最重要的三个条件是水头、地层特性和时间因素。具体计算方法如下:
(1)使用阶段:无论砂性土或粘性土,都应根据正常的地下水位技全水头和水土分算的原则确定;
(2)施工阶段;可根据围岩情况区别对待,