人教版六上数学各单元知识点归纳
第一单元分数乘法
一、分数乘法
(一)分数乘法的意义:
1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。
11例如:65×5表示求5个65的和是多少? ×5表示求5个的和是多少?
332、一个数乘分数的意义是求一个数的几分之几是多少。
141433例如:×表示求的是多少。4×表示求4的是多少.
373788(二)、分数乘法的计算法则:
1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)
2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
3、为了计算简便,能约分的要先约分,再计算。(尽量约分,不会约分的就不约,常考的质因数有11×11=121;13×13=169;17×17=289;19×19=361)
4、小数乘分数,可以先把小数化为分数,也可以把分数化成小数再计算(建议把小数化分数再计算)。 (三)、 乘法中比较大小的规律
一个数(0除外)乘大于1的数,积大于这个数。
一个数(0除外)乘小于1的数(0除外),积小于这个数。 一个数(0除外)乘1,积等于这个数。
(四)、分数混合运算的运算顺序和整数的运算顺序相同。整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律: a × b = b × a
乘法结合律: ( a × b )×c = a × ( b × c ) 乘法分配律: ( a + b )×c = a c + b c
二、分数乘法的解决问题(已知单位“1”的量(用乘法),即求单位“1”的几分之几是多少) 1、画线段图:(1)两个量的关系:画两条线段图,先画单位一的量,注意两条线段的左边要对齐。
(2)部分和整体的关系:画一条线段图。
2、找单位“1”: 单位“1” 在分数句中分数的前面;或在“占”、“是”、“比”“相当于”的后面。 3、写数量关系式的技巧: (1)“的” 相当于 “×” ,“占”、“相当于”“是”、“比”相当于 “ = ” (2)分数前是“的”字:用单位“1”的量×分数=具体量
11例如:甲数是20,甲数的是多少?列式是:20×
334、看分数前有没有多或少的问题;分数前是“多或少”的关系式:
(比少):单位“1”的量×(1-分数)=具体量; 例如:甲数是50,乙数比甲数少
12,乙数是多少?
列式是:50×(1-
12)
(比多):单位“1”的量×(1+分数)=具体量
可编辑范本
例如:小红有30元钱,小明比小红多
35,小红有多少钱?
列式是:50×(1+
35)
3、求一个数的几倍是多少:用 一个数×几倍;
4、求一个数的几分之几是多少: 用一个数×几分之几。 5、求几个几分之几是多少:用几分之几×个数
6、求已知一个部分量是总量的几分之几,求另一个部分量的方法: (1)、单位“1”的量×(1-分数)=另一个部分量(建议用)
(2)、单位“1”的量-已知占单位“1”的几分之几的部分量=要求的部分量
例如:教材15页做一做和16页练习第七题(题目中有时候会有这种题的关键字“其中”)
第二单元位置与方向(二)
一、确定物体位置的方法:1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺) 二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。
三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。
四、相对位置:东--西;南--北;南偏东--北偏西。
第三单元分数除法
三、倒数
1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 (要说清谁是谁的倒数)。 2、求倒数的方法:
(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。 (3)、求带分数的倒数:把带分数化为假分数,再求倒数。 (4)、求小数的倒数: 把小数化为分数,再求倒数。
3、 1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0) 4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
2221115、运用,a×=b×求a和b是多少。把a×=b×看成等于1,也就是求的倒数和求的倒数。
3334441、分数除法的意义:
乘法: 因数 × 因数 = 积
除法: 积 ÷ 一个因数 = 另一个因数
分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
1例如:
231÷意义是:已知两个因数的积是523与其中一个因数,求另一个因数的运算。
52、分数除法的计算法则:
除以一个不为0的数,等于乘这个数的倒数。 3、分数除法比较大小时的规律: (1)当除数大于1,商小于被除数;
(2)当除数小于1(不等于0),商大于被除数;
可编辑范本
(3)当除数等于1,商等于被除数。
一个数(0除外)除以一个真分数,所得的商大于它本身。
一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 一个数(0除外)除以一个带分数,所得的商小于它本身。
“[ ]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的, 再算中括号里面的。 二、分数除法解决问题
1,解法:(1)方程: 根据数量关系式设未知量为X(一般把单位1设为X),用方程解答。 解:设未知量为X (一定要解设),再列方程 用 X×分数=具体量
1例如:公鸡有20只,是母鸡只数的,母鸡有多少只。(单位一是母鸡只数,单位一未知.)解:设母鸡有X只。列
31方程为:X×=20
3(2)算术(用除法):单位“1”的量未知用除法:
即已知单位“1”的几分之几是多少,求单位“1”的量。 分数对应量÷对应分数 = 单位“1”的量
11如:公鸡有20只,是母鸡只数的,母鸡有多少只。(单位一是母鸡只数,单位一未知,)用除法,列式是:20÷
332、看分数前有没有比多或比少的问题;
分数前是“多或少”的关系式: (比少):具体量÷ (1-分数)= 单位“1”的量;
1例如:桃树有50棵,比苹果树少
61,苹果树有多少棵。 列式是:50÷(1-6)
(比多):具体量 ÷ (1+分数)= 单位“1”的量
1例如:一种商品现在是80元,比原价增加了
71,原价多少? 列式是:80÷(1+
7)
3、求一个数是另一个数的几分之几是多少: 用一个数除以另一个数,结果写为分数形式。 例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
153列式是:15÷20==
204
4、求一个数比另一个数多几分之几的方法: 用两个数的相差量÷单位“1”的量 =分数
即①求一个数比另一个数多几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
2例如:5比3多几分之几?(5-3)÷3=
32例如:3比5少几分之几?(5-3)÷5=
5
②求一个数比另一个数少几分之几:用(大数–小数) ÷另一个数(比那个数就除以那个数),结果写为分数形式。
说明:多几分之几不等于少几分之几,因为单位一不同。
可编辑范本
5、工程问题:把工作总量看作单位“1”,合做多长时间完成一项工程用1÷工作效率和,即1÷(
11+),
A时间B时间1(工作效率=)
时间例如:一项工程甲单独做要5天完成,乙单独做要10天完成,甲单独做要3天完成,三人合做几天可以完成?列式:
1111÷(
5+10+3)
第四单元比
(一)、比的意义
1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=
32(比值通常用分数表示,也可以用小数或整数表示)
15 ∶ 10 =
32
前项 比号 后项 比值
3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。 也可以表示两个不同量的比,得到一个新量。例: 路程÷速度=时间。 4、区分比和比值
比:表示两个数的关系,可以写成比的形式,也可以用分数表示。 比值:相当于商,是一个数,可以是整数,分数,也可以是小数。 5、根据分数与除法的关系,两个数的比也可以写成分数形式。 6、 比和除法、分数的联系: 比 除 法 分 数 前 项 被除数 分 子 比号“:” 除号“÷” 分数线“—” 后 项 除 数 分 母 比值 商 分数值 7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。 8、根据比与除法、分数的关系,可以理解比的后项不能为0。
9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。 10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分) 例如:15∶ 10
153=15÷10==
102
(二)、比的基本性质
1、根据比、除法、分数的关系:
商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。
分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
可编辑范本
2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、根据比的基本性质,可以把比化成最简单的整数比。 4.化简比:
①两个整数比:用比的前项和后项同时乘分母的最大公因数。
②两个分数比:用前项和后项同时乘分母的最小公倍数,再按化简整数比的方法化简。
③两个小数比:比的前项和后项同时向右移动小数点的位置,要移几位都移几位,先化成整数比再化简。 ④一个分数和一个整数的比:分数和整数同时乘分数的分母,把分数化成整数再化简。 ⑤一个小数和一个分数的比:先把小数化成分数(能约分的先约分),再按化简分数比的方法化简。
(2)用求比值的方法。注意: 最后结果要写成比的形式。
315例如: 15∶10 = 15÷10 ==
210还可以15∶10 = 15÷10 =
= 3∶2
32 最简整数比是3∶2
5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。
6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法
1,用分率(分数)解:按比例分配通常把总量看作单位一,即转化成分数。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。
例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
1141+4=5 糖占 用 25×得到糖的数量,水占
5554 用 25×
5得到水的数量。
2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。 例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?
糖和水的份数一共有1+4=5, 一份就是25÷5=5,糖有1份就是5×1,水有4分就是5×4
第六单元百分数
一、百分数的意义和写法 (一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。 (二)、百分数和分数的主要联系与区别: 联系:都可以表示两个量的倍比关系。
区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位; 分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。 ②、百分数的分子可以是整数,也可以是小数;
分数的分子不能是小数,只能是除0以外的自然数。
3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。 二、百分数和分数、小数的互化 (一)百分数与小数的互化:
1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。 2. 百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。 (二)百分数的和分数的互化
1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。 2、分数化成百分数:
① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法) 三、用百分数解决问题 (一)一般应用题
可编辑范本