好文档 - 专业文书写作范文服务资料分享网站

职高数学(基础模块)下教案

天下 分享 时间: 加入收藏 我要投稿 点赞

优秀教案

教 学 过 程 【注意】 由数列的有限项探求通项公式时,答案不一定是唯一教师 行为 说明 学生 行为 领会 思考 求解 教学 意图 反复 强调 时间 50 的.例如,an?(?1)n与an?cosn?都是例2(3)中数列“?1,1,?1,1,….”的通项公式. 【知识巩固】 例3 判断16和45是否为数列{3n+1}中的项,如果是,请指出是第几项. 分析 如果数a是数列中的第k项,那么k必须是正整数,并且a?3k?1. 解 数列的通项公式为an?3n?1. 将16代入数列的通项公式有 16?3n?1, 解得 n?5?N. *所以,16是数列{3n?1}中的第5项. 将45代入数列的通项公式有 45?3n?1, 解得 n?44?N*, 3所以,45不是数列{3n?1}中的项. *运用知识 强化练习 1. 根据下列各数列的通项公式,写出数列的前4项: nn(1)an?3?2; (2)an?(?1)?n. 启发 引导 提问 巡视 思考 了解 动手 求解 可以 交给 学生 自我 发现 2. 根据下列各无穷数列的前4项,写出数列的一个通项公式: 优秀教案

优秀教案

教 学 过 程 教师 行为 学生 行为 教学 意图 归纳 时间 65 指导 1111(1)?1,1,3,5,…; (2) ?, , ?, ,…; 91236 (3) 1357,,,,…. 24683. 判断12和56是否为数列{n2?n}中的项,如果是,请指出是第几项. *理论升华 整体建构 思考并回答下面的问题: 数列、项、项数分别是如何定义的? 结论: 按照一定的次序排成的一列数叫做数列.数列中的每一个数叫做数列的项.从开始的项起,按照自左至右排序,各项按照其位置依次叫做这个数列的第1项(或首项),第2项,第3项,…,第n项,…,其中反映各项在数列中位置的数字1,2,3,…,n,分别叫做各项的项数. *归纳小结 强化思想 本次课学了哪些内容?重点和难点各是什么? *自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进行学习的?你的学习效果如何? 判断22是否为数列{n2?n?20}中的项,如果是,请指出是第几项. *继续探索 活动探究 (1)读书部分:教材 (2)书面作业:教材习题6.1 A组(必做);6.1 B组(选做) (3)实践调查:用发现的眼睛寻找生活中的数列实例 引导 提问 巡视 指导 说明 回忆 反思 动手 求解 记录 检验 学生 学习 效果 分层次要求 质疑 归纳强调 回答 及时了解学生知识掌握情况 75 85 90

优秀教案

优秀教案

【教师教学后记】

项目 反思点 学生是否真正理解有关知识; 学生知识、技能的掌握情况 是否能利用知识、技能解决问题; 在知识、技能的掌握上存在哪些问题; 学生是否参与有关活动; 学生的情感态度 在数学活动中,是否认真、积极、自信; 遇到困难时,是否愿意通过自己的努力加以克服; 学生是否积极思考; 思维是否有条理、灵活; 学生思维情况 是否能提出新的想法; 是否自觉地进行反思; 学生是否善于与人合作; 学生合作交流的情况 在交流中,是否积极表达; 是否善于倾听别人的意见; 学生是否愿意开展实践; 能否根据问题合理地进行实践; 学生实践的情况 在实践中能否积极思考; 能否有意识的反思实践过程的方面.

【课题】 6.2 等差数列(一)

【教学目标】

知识目标:

(1)理解等差数列的定义; (2)理解等差数列通项公式. 能力目标:

通过学习等差数列的通项公式,培养学生处理数据的能力. 【教学重点】

等差数列的通项公式. 【教学难点】

等差数列通项公式的推导.

优秀教案

优秀教案

【教学设计】

本节的主要内容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导.等差数列的定义中,应特别强调“等差”的特点:an?1?an?d(常数).例1是基础题目,有助于学生进一步理解等差数列的定义.

教材中等差数列的通项公式的推导过程实际上是一个无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的巩固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:

只要知道其中任意三个量,就可以求出另外的一个量.

a1,d,n,an,【教学备品】

教学课件. 【课时安排】

2课时.(90分钟) 【教学过程】

教 学 过 程 *揭示课题 6.2 等差数列. *创设情境 兴趣导入 【观察】 将正整数中5的倍数从小到大列出,组成数列: 5,10,15,20,…. (1) 将正奇数从小到大列出,组成数列: 1,3,5,7,9,…. (2) 观察数列中相邻两项之间的关系, 发现:从第2项开始,数列(1)中的每一项与它前一项的差都是5;数列(2)中的每一项与它前一项的差都是2.这两个数列的一个共同特点就是从第2项开始,数列中的每一项与它前一项的差都等于相同的常数. 教师 行为 介绍 播放 课件 质疑 引导 分析 学生 行为 了解 观看 课件 思考 自我 分析 教学 意图 从实例出发使学生自然的走向知识点 引导 式启 发学 生得 出结 时间 0 5 优秀教案

优秀教案

教 学 过 程 教师 行为 学生 行为 教学 意图 果 时间 *动脑思考 探索新知 如果一个数列从第2项开始,每一项与它前一项的差都等于同一个常数,那么,这个数列叫做等差数列.这个常数叫做等差数列的公差,一般用字母d表示. 由定义知,若数列?an?为等差数列,d为公差,则an?1?an?d,即 总结 归纳 仔细 分析 讲解 关键 (6.1) 词语 思考 理解 记忆 观察 思考 主动 求解 动手 求解 带领 学生 分析 10 an?1?an?d *巩固知识 典型例题 例1 已知等差数列的首项为12,公差为?5,试写出这个数列的第2项到第5项. 解 由于a1?12,d??5,因此 a2?a1?d?12???5??7; 说明 强调 引领 讲解 通过例题进一步领会等差数列通项公式 及时 了解 学生 知识 掌握 得情 况 45 25 a3?a2?d?7???5??2; a4?a3?d?2???5???3; a5?a4?d??3???5???8. *运用知识 强化练习 1. 已知?an?为等差数列,a5??8,公差d?2,试写出这个数列的第8项a8. 2. 写出等差数列11,8,5,2,…的第10项. 说明 提问 巡视 指导 优秀教案

职高数学(基础模块)下教案

优秀教案教学过程【注意】由数列的有限项探求通项公式时,答案不一定是唯一教师行为说明学生行为领会思考求解教学意图反复强调时间50的.例如,an?(?1)n与an?cosn?都是例2(3)中数列“?1,1,?1,1,….”的通项
推荐度:
点击下载文档文档为doc格式
8xsfv8kmd20fvam2gyzr6h1tx45dea007p5
领取福利

微信扫码领取福利

微信扫码分享