3.1.1一元一次方程
教学目标: 知识与技能:
经历运用方程解决实际问题的过程; 过程与方法:
通过具体的例子感受一些常用的相等关系式. 情感态度与价值观:
学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程 教学重点:
一元一次方程的概念 教学难点:
一元一次方程的概念 教学过程: 探索1
(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 去年购买的计算机的数量是________;今年购买的计算机的数量是________;三年总共购买的数量是_________.
(2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个学校购买了多少台计算机?
解:设前年购买计算机x台,那么, 去年购买的计算机的数量是________; 今年购买的计算机的数量是________; 根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程:
__________________________. 合并得________________. 系数化为1得______________. 答:______________________.
归纳:总量等于各部分量的和是一个基本的相等关系. 探索2
(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_______本.
设计(1)是让学生感受列代数式是列方程的
(2) 把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_______本.
(3) 把一些书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺20本.这个班有多少学生?
解: 设这个班级有x名学生,
根据第一关系,这批书共_________________本; 根据第二关系,这批书共_________________本; 这批书的总数是个定值,表示它的两个不同的式子应该相等.
根据这一相等关系列得方程: ________________________. 想一想,怎样解这个方程?
归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系. 练习
1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_________吨.
(2)灌溉两块同样大的实验田,第一块用喷灌的方式,第二块用漫灌的方式, 喷灌的用水量是漫灌的25%,若两块地共用水300吨.每块地各用水多少吨?
解:设第二块地(漫灌)用水x吨,
根据关系: 喷灌的用水量是漫灌的25%(关系式是:喷灌的用水量=漫灌的的用水量×25%),得
第一块地(喷灌)用水________吨.
根据关系: 两块地共用水300吨,可列方程: __________________________________. 解得___________.
答:___________________________. 学生归纳学生思考并填空 作业
P80.练习,P83.1,6
列方程. 熟悉这些关系有助于